A FEW TOPICS ON THE INTERIOR STRUCTURE AND EVOLUTION OF MERCURY

SEBASTIANO PADOVAN German Aerospace Center (DLR)

RUSSIAN-GERMAN SEMINAR JUNE 1st, 2016 BERLIN

Universe

Exoplanets

Motivations

Understand Nature
Solar System
Terrestrial planets
Exoplanets

Solar System

Terrestrial planets

What does interior structure mean?

 In this talk it means the broad features of a terrestrial planet. i.e., density, state, temperature at the present time.

What does <u>evolution</u> mean?

 How does the interior structure changes over time, and how did the body end up the way it is?

Interior Structure: Constraints

- Mean density
- Moment of Inertia
- Moment of Inertia (take 2)
- Crustal thickness
- Tides

• Mean density bears on the bulk abundance of elements in the interior of a body.

Example: Mercury and Earth

Earth: 5515 kg/m³ Mercury: 5427 kg/m³

<u>Uncompressed densities</u> Earth: 4000 kg/m³ Mercury: 5300 kg/m³

<u>Implications</u> Mercury has more metals

References: NASA NSSDC

<u>Moment of Inertia</u> $C = \int_{M} r_{\perp}^2 dm = \alpha M R^2$

• Moment of Inertia bears on the radial distribution of mass.

<u>Moment of Inertia</u> $C = \int_{M} r_{\perp}^2 dm = \alpha M R^2$

• Moment of Inertia bears on the radial distribution of mass.

Values of α

Point mass:	0.
Earth:	0.330
Mercury:	0.346
Mars:	0.364
Moon:	0.393
Uniform density:	0.4

<u>Moment of Inertia</u> $C = \int_{M} r_{\perp}^2 dm = \alpha M R^2$

• Moment of Inertia bears on the radial distribution of mass.

References: Williams et al., 2014; Konopliv et al., 2011; Margot et al., 2012; NASA NSSDC

Two-layer model

Unknowns: $r_{c'} \rho_{c'} \rho_{m}$ Observables: ρ

$$\rho = \rho_c \frac{r_c^3}{R^3} + \rho_m \left(1 - \frac{r_c^3}{R^3} \right)$$

Two-layer model

Unknowns: $r_{c'} \rho_{c'} \rho_{m}$ Observables: ρ

$$\rho = \rho_c \frac{r_c^3}{R^3} + \rho_m \left(1 - \frac{r_c^3}{R^3}\right)$$

<u>Moment of Inertia</u> <u>Outer Solid Shell</u>

- Possible to measure remotely for Mercury for its dynamical configuration
- The fact that

 $C_m < C$ implies that the core of Mercury is liquid.

 $C_m = \int r_\perp^2 dm'$

m

<u>Two-layer model</u>

Unknowns: r_c, ρ_c, ρ_m Observables: ρ, C, C_m

Simplifications of a 2-layer model: No constant density More than 2 layers (inner core, crust)

Comparison with accurate models:

Accurate Modeling

Two-Layer Model

$$\rho_c = 7256 \text{ kg/m}^3$$

 $\rho_m = 3204 \text{ kg/m}^3$

 $r_c = 1998 \text{ km}$

References: Hauck et al., 2013.

(Hauck et al., 2013)

$$\rho_c = 6980 \pm 280 \text{ kg/m}^3$$

 $\rho_m = 3380 \pm 200 \text{ kg/m}^3$

 $r_c = 2020 \pm 30 \text{ km}$

Two-layer model

Unknowns: r_c, ρ_c, ρ_m Observables: ρ, C, C_m

Two-Layer Model

$$\rho_c = 7256 \text{ kg/m}^3$$

 $\rho_m = 3204 \text{ kg/m}^3$

 $r_c = 1998 \text{ km}$

References: Hauck et al., 2013.

Accurate Modeling (Hauck et al., 2013)

$$\rho_c = 6980 \pm 280 \text{ kg/m}^3$$

 $\rho_m = 3380 \pm 200 \text{ kg/m}^3$
 $r_c = 2020 \pm 30 \text{ km}$

Crustal thickness

 Using gravity (measured) and topography (measured), one can estimate the crustal thickness by assuming a compensation model.

Crustal thickness: 35 ± 18 km (Padovan et al., 2015)

• Mercury has the highest efficiency of crustal production

Interior structure of Mercury

- State of the core
- Mean density of the core
- Radius of the core
- Mean density of the outer shell

Constant thoroughout evolution

- Large amount of melt produced
- Cold mantle at present

Time dependent

Evolution of Mercury

Questions:

- How did Mercury cooled during its evolution?
- When and how did the crust form?

Observables:

- Timing of the major volcanic eruptions
- Big impact basins

References: Fassett et al., 2012; Denevi et al., 2013; Padovan et al. ,2015.

Evolution of Mercury

Questions:

- How did Mercury cooled during its evolution?
- When and how did the crust form?

Observables:

- Timing of the major volcanic eruptions
- Big impact basins

Models:

- Endogenic processes (mantle convection driven by decay of radioactive sources)
- Exogenic processes (impacts)

Evolution of Mercury Convection

Evolution of Mercury

Melt Production from Convection

0.25

Evolution of Mercury Convection + Impacts

Evolution of Mercury Post-impact Melt (Caloris basin)

Evolution of Mercury

- Around the impact site, the thermal anomalies induce melting at shallower depths with respect to the convection-only case
- The post-basin melt sheet is a few kilometers thick. This is compatible with estimates of the thickness of the upper layer of Caloris interior plains

References: Ernst et al., 2014.

<u>Summary</u>

The interior structure of Mercury is relatively well known:

- State of the outer core (liquid)
- Radius of the core
- Density of the core
- Density of the outer solid shell
- Crustal thickness
- Temperature of the CMB

Current research:

- How did the present crust accumulate?
- How well can we tie the geological record to the thermal evolution?

In a wider perspective, a few important things to be addressed are:

- What can we learn from just mean density?
- What does stellar composition tell about the interior of the planets?
- We should incorporate atmosphere production with interior modeling, given that atmosphere composition is probably the next information we will get from exoplanets.