

Сергей А. Лебедев

Геофизический Центра РАН Государственный океанографический институт

Андрей Г. Костяной

Институт океанологии им. П.П. Ширшова РАН

КОМПЛЕКСНЫЙ СПУТНИКОВЫЙ Мониторинг Каспийского моря с Использованием Данных альтиметрии

«Современные проблемы дистанционного зондирования Земли из космоса» Москва, ИКИ РАН, 14-17 ноября 2005 г.

Каспийское море

Уникальность экосистемы и биоресурсов Каспийского моря на фоне активизации хозяйственной деятельности, особенно разворачивающейся морской нефтедобычи, остро ставит вопрос контроля и прогноза его состояния. За последние 15 лет значительно уменьшился объем регулярных гидрологических работ в море, а также объем информации с метеостанций и постов. Сеть станций и уровнемерных постов на Каспии стремительно сокращается (в 1960 году их было 79, в 1972 г. – 51, в 1992 г. – 36). В настоящее время на российском побережье Каспия работают только три уровнемерных поста, а всего на Каспии их 7-8.

«Современные проблемы дистанционного зондирования Земли из космоса» Москва, ИКИ РАН, 14-17 ноября 2005 г.

Спутниковая информация

В настоящее время для решения прикладных окенологических задач используется следующая спутниковая информация:

- ИК- и СВЧ-радиометрия (температура поверхности океана и т.д.)
- Радиометрия в видимом диапазоне (температура поверхности океана, лед, хлорофилл и т.д.)
- Э Альтиметрия (высота поверхности океана, приводный ветер, высоты волн и т.д.)
- Скаттерометрия (приводный ветер и т.д.)
- Радиолокация (SAR) подстилающей поверхности (загрязнение. приводный ветер, высоты волн и т.д.)

«Современные проблемы дистанционного зондирования Земли из космоса» Москва, ИКИ РАН, 14-17 ноября 2005 г.

Спутниковая альтиметрия

- высота геоида или
 эквипотенциальная поверхность
 гравитационного поля Земли
 высота орбиты спутника
- высота спутника над поверхностью моря
- высота морской поверхности с учетом ряда поправок (ΔH_i), связанных с прохождением радиосигнала через атмосферу, инструментальными ошибками и состоянием подстилающей поверхности: H_{ssh} = H_{orb} H_{alt} $\Sigma \Delta H_i$ динамическая топография как отклонения морской поверхности относительно геоида: H_{dt} = H_{ssh} H_g

Помимо этого спутниковая альтиметрия позволяет анализировать:

- амплитуду скорости приволного ветра
- высоты волн
- состояние подстилающей поверхности

«Современные проблемы дистанционного зондирования Земли из космоса» Москва, ИКИ РАН, 14-17 ноября 2005 г.

Основные программы спутниковых альтиметрических измерений

Программа		Bassis survivo		Параметры орбиты				
		время активной	Масса, <i>кг</i>	Выс	ота,	11	Период	
		раооты, месяц/год		перигей	апогей	наклонение, градусы	повторяемости ² , <i>сутки</i>	
Skylab-4 (o	рбитальная станция)	05/1973 - 02/1974	20847	422	437	130	-	
GEOS-3		04/1975 - 12/1978	341	817	858	115	-	
SFASAT		07/1978 - 09/1978	2300	761	765	108	17	
SEASIA		09/1978 - 10/1978	2300		705	100	3	
DSAT	геодезическая программа	03/1985 - 11/1986	635	775	779	108.1	~23	
CEC	изомаршрутная программа	11/1986 – 12/1989					17	
ГЕОИК 1 ¹	(Космос-1660)	07/1985 - 10/1986	1500	1482	1525	73.6	-	
ГЕОИК 2 ¹	(Космос-1732)	03/1986 - 03/1986	1500	1480	1525	73.6	-	
ГЕОИК 31	(Космос-1803)	12/1986 - 12/1987	1500	1497	1504	82.6	-	
ГЕОИК 4 ¹ (Космос-1823)		03/1987 - 10/1987	1500	1479	1524	73.6	-	
ГЕОИК 5 ¹ (Космос-1950)		06/1988 - 07/1990	1500	1484	1522	73.6	-	
ГЕОИК 6 ¹ (Космос-2037)		09/1989 - 09/1990	1500	1485	1524	73.6	-	
ГЕОИК 7 ¹	(Космос-2088)	08/1990 - 03/1993	1500	1484	1524	73.6	-	
	Фаза А	07/1991 - 11/1991		774	775	98.5	3	
	Фаза В	11/1991 - 03/1992					3	
7	Фаза С	04/1992 - 12/1993					35	
L SS	Фаза D	12/1993 - 04/1994	2384				3	
	Фаза Е1	04/1994 - 09/1994					~168	
	Фаза F ¹	09/1994 - 03/1995					~168	
Фаза G		04/1995 - 06/1996					35	
TOPEX/Poseidon		08/1992 – настоящее время	2402	1331	1344	66.04	10	
ГЕОИК 8 ¹	(Космос-2226)	01/1993 - 07/1993	1500	1479	1525	73.6	-	
ГЕОИК 9 ¹ (Гео-ИК)		12/1994 - 07/1995	1500	1481	1526	73.6	—	
ERS-2		04/1995 - 06/2002	2516	784	785	98.6	35	
GFO-1		02/1998 – настоящее время	410	786	788	108.1	17	
Jason-1		12/2001 – настоящее время	500	1337	1343	66.2	10	
ENVISAT		03/2002 - настоящее время	7991	783	785	98.6	35	
ICESsat		01/2003 - настоящее время	1000	593	610	94	183.8	
CryoSat ¹		октябрь 2005 — ошибка при выволе на орбиту	650	720		92	~369	

¹ – геодезические программы (для российских программ в скобках указан спутник-носитель)
 ² – для изомаршрутных программ

«Современные проблемы дистанционного зондирования Земли из космоса» Москва, ИКИ РАН, 14-17 ноября 2005 г.

Выбор данных спутниковой альтиметрии

Спутник TOPEX/Poseidon

Спутник Jason-1

Для анализа межгодовой и сезонной изменчивости уровня Каспийского моря лучше выбрать данные спутников TOPEX/Poseidon и Jason-1. Этот выбор обусловлен следующими причинами.

- Точность измерения высоты спутника над морской поверхностью для этих программ составляет 1.7 см, а расчет самой высоты моря относительно отсчетного эллипсоида – 4.2 см.
- Э Временной масштаб повторения измерений вдоль трека 9.916 суток наиболее приемлем для исследования синоптической и сезонной изменчивости уровня моря.
- Расположение треков внутри изомаршрутного цикла по акватории моря наиболее оптимально, что позволяет анализировать изменчивость уровня вдоль треков с пространственным разрешением 5-6 км.
- Данные TOPEX/Poseidon представляют собой непрерывный и наиболее длинный по времени ряд измерений (с сентября 1992 г. по август 2002 г.) с возможностью его продления данными спутника Jason-1 (с января 2002 г. по настоящее время)

«Современные проблемы дистанционного зондирования Земли из космоса» Москва, ИКИ РАН, 14-17 ноября 2005 г.

Расположение треков

ТОРЕХ/Poseidon после маневра орбиты от 19 августа 2002 г.

«Современные проблемы дистанционного зондирования Земли из космоса» Москва, ИКИ РАН, 14-17 ноября 2005 г.

Изменчивость высоты морской поверхности в точках пересечения треков

«Современные проблемы дистанционного зондирования Земли из космоса» Москва, ИКИ РАН, 14-17 ноября 2005 г.

Анализ межгодовой изменчивости уровня Каспийского моря

Изменчивость абсолютного уровня Каспийского моря (м) за период с января 1993 г. по декабрь 2003 г. по данным альтиметрических измерений спутников TOPEX/Poseidon и Jason-1 (синий цвет) и данным уровнемерных посто (красный цвет)

Скорость изменения уровня в разных частях Каспийского моря

Временной	Скорость изменения уровня (см/год)						
интервал	Северный Каспий	Средний Каспий	Южный Каспий	Море в целом			
октябрь 1992 – март 1995	18.8 ± 1.8	22.2 ± 1.7	20.4 ± 2.4	20.4 ± 2.2			
ноябрь 1995 – сентябрь 1996	-24.2 ± 2.0	-17.4 ± 2.4	-26.1 ± 2.1	-23.1 ± 2.4			
октябрь 1997 – июнь 1998	-2.5 ± 1.0	-6.9 ± 2.0	-6.3 ± 2.1	-5.3 ± 2.1			
декабрь 1998 – апрель 2001	-7.9 ± 1.3	-6.7 ± 1.6	-12.5 ± 1.8	-9.1 ± 1.9			
декабрь 2002 – декабрь 2003	11.9 ± 2.4	11.8 ± 1.7	17.5 ± 2.9	13.7 ± 2.3			

Коэффициенты корреляции данных уровнемерных постов и изменчивости высоты морской поверхности в точках мересечения треков

Сравнение данных

Диаграмма среднеквадратичной разности уровня моря по постам и в точках пересечения треков и соответствующие коэффициенты корреляции между данными уровнемерных постов (за исключением поста Махачкала) и результатами расчетов по данным альтиметрических измерений спутников TOPEX/Poseidon и Jason-1 (красный цвет) и между самими уровнемерными постами (синий цвет)

N N	Точки пересечения треков							
уровнемерные	Северный		Средний Каспий		Южный Каспий			
Посты	057-092	133-244	133-092	209-092	209-016	031-092	031-016	
Форт Шевченко	0.876	0.859	0.923	0.931	0.918	0.931	0.892	0.938
Махачкала	0.899	0.739	0.862	0.853	0.901	0.883	0.874	0.906
о. Жилой	0.876	0.863	0.948	0.942	0.932	0.931	0.901	0.950
Нефтяные Камни	0.876	0.876	0.943	0.942	0.941	0.948	0.901	0.953
Баку	0.841	0.889	0.951	0.960	0.913	0.919	0.892	0.941
Куули-Маяк	0.859	0.874	0.952	0.953	0.925	0.954	0.937	0.958
Туркменбаши (Красноводск)	0.861	0.850	0.918	0.933	0.914	0.948	0.908	0.940
Кара-Богаз-Гол	0.880	0.831	0.925	0.932	0.922	0.942	0.912	0.946
Море (по постам)	0.909	0.876	0.963	0.964	0.956	0.966	0.936	0.978

«Современные проблемы дистанционного зондирования Земли из космоса» Москва, ИКИ РАН, 14-17 ноября 2005 г.

Анализ сезонной изменчивости

Сезонная изменчивость аномалий высоты морской поверхности в точках пересечения в Южном Каспии

«Современные проблемы дистанционного зондирования Земли из космоса» Москва, ИКИ РАН, 14-17 ноября 2005 г.

«Современные проблемы дистанционного зондирования Земли из космоса» Москва, ИКИ РАН, 14-17 ноября 2005 г.

Высота геоида (м) по модели EGM96

Модели средних высот морской поверхности

Среднеквадратичное отклонение (м) разницы аномалий средней высоты морской поверхности для различных моделей

	CSR95	OSU95	GSFC00	CLS_SHOM98	CLS01	EGM96
CSR95	_	3.14	2.99	2.98	3.10	2.95
OSU95	3.14	_	0.53	0.57	0.28	0.55
GSFC00	2.99	0.53	—	0.46	0.43	0.17
CLS_SHOM98	2.98	0.57	0.46	-	0.47	0.58
CLS01	3.10	0.28	0.43	0.47	_	0.44
EGM96	2.95	0.55	0.17	0.58	0.44	_

Коэффициент корреляции аномалий СВМП для различных моделей

	CSR95	OSU95	GSFC00	CLS_SHOM98	CLS01	EGM96
CSR95	-	0.681	0.698	0.702	0.689	0.714
OSU95	0.681	-	0.992	0.994	0.998	0.991
GSFC00	0.698	0.992	-	0.990	0.995	0.999
CLS_SHOM98	0.702	0.994	0.990	-	0.702	0.990
CLS01	0.689	0.998	0.995	0.702	-	0.994
EGM96	0.714	0.991	0.999	0.990	0.994	-

«Современные проблемы дистанционного зондирования Земли из космоса» Москва, ИКИ РАН, 14-17 ноября 2005 г.

Построение модели невозмущенной морской поверхности

Модель невозмущенной или эквипотенциальной поверхности Каспийского моря, соответствует невозмущенной поверхности моря в каждый момент времени. Таким образом, в отличии от глобальных моделей средней высоты морской поверхности, построенных по данным спутниковой альтиметрии, для Каспийского моря она зависит не только широты и долготы, но и от времени.

XII Международная конференция по промысловой океанологии, Светлогорск, Калининградская обл., Россия, 12 – 17 сентября 2005

© 2005, С.А.Лебедев, Геофизический Центр РАН

1995 – 1993

51°

53°

55°

49°

49°

51'

53°

55°

Оценка пространственновременной изменчивости уровня моря

Разница средних высот морской поверхности (см) за соответствующие годы

Скорость изменения уровня (см/год) Каспийского моря и в разных его частях с 1993 г. по 2003 г. по данным модели ГЦ РАН

Вранациой	Скорость изменения уровня							
интервал	Северный Каспий	Средний Каспий	Южный Каспий	Море вцелом				
1993 - 1995	18.2 ± 3.8	22.8 ± 2.5	20.9 ± 4.9	21.1 ± 4.1				
1995 –1997	-18 ± 1.4	-13.9 ± 1.8	-18 ± 5.6	-24 ± 5.0				
1997 –1999	-3.6 ± 1.5	-6.2 ± 1.7	-5.4 ± 4.3	-5.3 ± 3.2				
1999 –2001	-8.7 ± 2.7	-8.4 ± 1.7	-12 ± 2.4	-9.3 ± 2.9				
2001 - 2003	8.9 ± 4.6	7.0 ± 5.3	10.6 ± 6.3	9.1 ± 4.4				

«Современные проблемы дистанционного зондирования Земли из космоса» Москва, ИКИ РАН, 14-17 ноября 2005 г.

© 2005, С.А.Лебедев, А.Г. Ксостяной

47° â.ä.

Синоптическая изменчивость динамической топографии

Карты синоптической динамической топографии Каспийского моря строились как суперпозиция среднеклиматической динамической топографии и аномалий уровня, рассчитанных относительно модели ГЦ РАН

Среднеклиматическая динамическая топографии Каспийского моря, рассчитанная по модели трехмерной гидродинамической бароклинной модели со свободной поверхностью, созданной сотрудниками Лаборатории морских прикладных исследований Гидрометцентра России

«Современные проблемы дистанционного зондирования Земли из космоса» Москва, ИКИ РАН, 14-17 ноября 2005 г.

Аномалии уровня и синоптическая динамическая топография (см) для 65-го цикла альтиметрических измерений спутника TOPEX/Poseidon с 19 по 29 июня 1994 года

«Современные проблемы дистанционного зондирования Земли из космоса» Москва, ИКИ РАН, 14-17 ноября 2005 г.

Ветровой режим

Изменчивость скорости приводного ветра в точке пересечения 133-092 в Среднем Каспии

Гистограмма распределения скорости приводного ветра в точке пересечения 133-092 в Среднем Каспии

Средняя за апрель скорость приводного ветра

Сезонная изменчивость высоты волн в Среднем Каспии

Изменчивость высоты волн в точке пересечения 133-092 в Среднем Каспии

Гистограмма распределения высот волн в точке пересечения 133-092 в Среднем Каспии

«Современные проблемы дистанционного зондирования Земли из космоса» Москва, ИКИ РАН, 14-17 ноября 2005 г.

Заключение

- Высокая эффективность метода спутниковой альтиметрии для мониторинга уровня и динамики вод замкнутых морей и озер (в частности, Каспийского моря) с высоким пространственным и временным разрешением подтверждена полученными результатами
- Дальнейший непрерывный мониторинг уровня Каспийского моря в квазиреальном времени в различных точках акватории по данным спутниковой альтиметрии позволит выявить роль стока рек, осадков, испарения, а также термического режима моря в изменчивости уровня и, тем самым, разграничить эффекты естественного изменения климата и антропогенного воздействия.
- Это позволит проследить, насколько тенденция к новому повышению уровня является устойчивой, что чрезвычайно важно для проектирования, строительства и эксплуатации промышленных гидротехнических объектов на акватории и берегах Каспийского моря и обеспечения экологической безопасности хозяйственной деятельности на Каспии.

