Численные методы оценки ляпуновских экспонент и ляпуновской размерности аттрактора уравнения "реакция-диффузия" в гантелеобразной области

> C. Д. Глызин glyzin@uniyar.ac.ru

Ярославский государственный университет им. П.Г. Демидова

"Методы суперкомпьютерного моделирования" 1-3 октября 2014

С. Д. Глызин (ЯрГУ)

A = A = A

Концепция диффузионного хаоса

$$\frac{\partial u}{\partial t} = \nu D \Delta u + F(u), \quad \frac{\partial u}{\partial \vec{n}}\Big|_{\partial \Omega} = 0, \tag{1}$$

где Δ — оператор Лапласа; $u \in \mathbb{R}^k$, $k \ge 2$; $D = \text{diag} \{d_1, \ldots, d_k\}$, $d_j > 0, j = 1, \ldots, k; \nu > 0$ — параметры определяющие диффузию; \vec{n} — вектор внешней нормали к достаточно гладкой границе $\partial \Omega$ области $\Omega \subset \mathbb{R}^m$, $m \ge 1$ и F(u) — достаточно гладкая вектор-функция.

Типична ситуация, в которой точечная система (1), т.е. система обыкновенных дифференциальных уравнений

$$u = F(u), \tag{2}$$

имеет экспоненциально орбитально устойчивый цикл

С. Д. Глызин (ЯрГУ)

$$u = u_0(t), \quad du_0/dt \neq 0 \tag{3}$$

Концепция диффузионного хаоса

$$\frac{\partial u}{\partial t} = \nu D \Delta u + F(u), \quad \frac{\partial u}{\partial \vec{n}}\Big|_{\partial \Omega} = 0, \quad (1)$$

где Δ — оператор Лапласа; $u \in \mathbb{R}^k$, $k \ge 2$; $D = \text{diag} \{d_1, \ldots, d_k\}$, $d_j > 0, j = 1, \ldots, k; \nu > 0$ — параметры определяющие диффузию; \vec{n} — вектор внешней нормали к достаточно гладкой границе $\partial \Omega$ области $\Omega \subset \mathbb{R}^m, m \ge 1$ и F(u) — достаточно гладкая вектор-функция.

Типична ситуация, в которой точечная система (1), т.е. система обыкновенных дифференциальных уравнений

$$\dot{u} = F(u), \tag{2}$$

имеет экспоненциально орбитально устойчивый цикл

периода $T_0 > 0$. с. Д. Глызин (ЯрГУ)

$$u = u_0(t), \quad du_0/dt \neq 0 \tag{3}$$

В качестве примера можно взять систему

$$\dot{\mathcal{N}}_{1} = r_{1}[1 + a(1 - \mathcal{N}_{3}) - \mathcal{N}_{1}]\mathcal{N}_{1},
\dot{\mathcal{N}}_{2} = r_{2}[\mathcal{N}_{1} - \mathcal{N}_{2}]\mathcal{N}_{2},
\dot{\mathcal{N}}_{3} = r_{3}[\mathcal{N}_{2} - \mathcal{N}_{3}]\mathcal{N}_{3}$$
(4)

моделирующую реакцию Белоусова–Жаботинского. Здесь $r_j > 0$, j = 1, 2, 3, a > 0.

Другой пример — уравнение Хатчинсона

$$\dot{\mathcal{N}} = r[1 - \mathcal{N}(t-1)]\mathcal{N}$$
(5)

при $r > \pi/2$ описывает колебания плотности популяции.

・ 伊 ト ・ ヨ ト ・ ヨ ト ・ ヨ

В качестве примера можно взять систему

$$\dot{\mathcal{N}}_{1} = r_{1}[1 + a(1 - \mathcal{N}_{3}) - \mathcal{N}_{1}]\mathcal{N}_{1},$$

$$\dot{\mathcal{N}}_{2} = r_{2}[\mathcal{N}_{1} - \mathcal{N}_{2}]\mathcal{N}_{2},$$

$$\dot{\mathcal{N}}_{3} = r_{3}[\mathcal{N}_{2} - \mathcal{N}_{3}]\mathcal{N}_{3}$$
(4)

моделирующую реакцию Белоусова–Жаботинского. Здесь $r_j > 0$, j = 1, 2, 3, a > 0.

Другой пример — уравнение Хатчинсона

$$\dot{\mathcal{N}} = r[1 - \mathcal{N}(t-1)]\mathcal{N}$$
(5)

при $r > \pi/2$ описывает колебания плотности популяции.

Для исследования устойчивости цикла (3), линеаризуем на нем (1) и применим метод Фурье

$$\dot{h} = [A_0(t) - zD]h, \tag{6}$$

где $A_0(t) = F'(u)|_{u=u_0(t)}$; параметр z принимает дискретные значения $\nu\lambda_k$, $k = 0, 1, \ldots$ и $0 = \lambda_0 < \lambda_1 \le \lambda_2 \le \ldots$ — собственные числа оператора — Δ с условиями Неймана на границе.

Пусть z в (6) меняется непрерывно на полупрямой $z \ge 0$. Обозначим $\mu_s = \mu_s(z), s = 1, \ldots, k$, мультипликаторы системы (6) и определим функцию

$$\alpha(z) = \max_{1 \le s \le k} \left\{ \frac{1}{T_0} \operatorname{Re} \ln \mu_s(z) \right\}.$$
(7)

 $\alpha(0) = 0$, поскольку у системы (6) при z = 0 (соответствует циклу (3) в модели (2) и экспоненциально устойчив) имеет простой единичный мультипликатор, которому соответствует решение Флоке $h = \dot{u}_0(t)$. Остальные мультипликаторы удовлетворяют условию $\{\mu \in \mathbb{C} : |\mu| < 1\}$.

・ 伊 ト ・ ヨ ト ・ ヨ ト …

Определение

Краевая задача параболического типа (1) называется биологической или относится к классу B, если (1.1a) Точечная модель (2) имеет экспоненциально орбитально устойчивый цикл (3). (1.1b) Существуют такие $0 \le z_1 < z_2$, что функция (7) строго положительна на интервале $z_1 < z < z_2$. (1.1c) Для всех достаточно малых $\nu > 0$, динамическая система, порождаемая (1) в фазовом пространстве $C(\overline{\Omega}; \mathbb{R}^k), \overline{\Omega} = \Omega \cup \partial \Omega$ имеет хаотический аттрактор A_{ν} , ляпуновская размерность которого $d_L(A_{\nu})$ стремится к $+\infty$ при $\nu \to 0$.

Гипотеза (о диффузионном хаосе). *Класс В параболических систем (1) не пуст.*

Определение

Краевая задача параболического типа (1) называется биологической или относится к классу B, если (1.1a) Точечная модель (2) имеет экспоненциально орбитально устойчивый цикл (3). (1.1b) Существуют такие $0 \le z_1 < z_2$, что функция (7) строго положительна на интервале $z_1 < z < z_2$. (1.1c) Для всех достаточно малых $\nu > 0$, динамическая система, порождаемая (1) в фазовом пространстве $C(\overline{\Omega}; \mathbb{R}^k), \overline{\Omega} = \Omega \cup \partial \Omega$ имеет хаотический аттрактор A_{ν} , ляпуновская размерность которого $d_L(A_{\nu})$ стремится к $+\infty$ при $\nu \to 0$.

Гипотеза (о диффузионном хаосе). Класс В параболических систем (1) не пуст.

イロト イポト イヨト イヨト

Гипотеза о диффузионном хаосе может быть проверена только численно.Рассмотрим уравнение Гинзбурга–Ландау на отрезке 0 ≤ x ≤ 1.

$$w_t = \nu(1 - ic_1)w_{xx} + w - (1 + ic_2)|w|^2w, \ w_x|_{x=0} = w_x|_{x=1} = 0,$$
 (8)

где w = w(t, x) — комплексно значная функция, а ν , c_1 , c_2 положительные параметры. Покажем, что данная система принадлежит классу В при

$$c_1 c_2 > 1.$$
 (9)

Легко проверить, что для системы (8) выполнены условия (1.1а) и (1.1b). У системы имеется независящий от *x* цикл

$$w = \exp(-ic_2 t), \tag{10}$$

который экспоненциально орбитально устойчив для точечной модели. Устойчивость цикла (10) в распределенной модели (8) определяется следующим образом. Уравнение (8) дополняется комплексно сопряженным, а затем выполняется подстановка $w = \exp(-ic_2 t)(1 + h_1), \ \overline{w} = \exp(ic_2 t)(1 + h_2)$ и отбрасываются нелинейные по h_1 and h_2 члены. Приходим к системе

$$\begin{aligned} \frac{\partial h_1}{\partial t} &= \nu (1 - ic_1) \frac{\partial^2 h_1}{\partial x^2} - (1 + ic_2) (h_1 + h_2), \\ \frac{\partial h_2}{\partial t} &= \nu (1 + ic_1) \frac{\partial^2 h_2}{\partial x^2} - (1 - ic_2) (h_1 + h_2), \\ \frac{\partial h_j}{\partial x} \bigg|_{x=0} &= \frac{\partial h_j}{\partial x} \bigg|_{x=1} = 0, \ j = 1, 2, \end{aligned}$$

С. Д. Глызин (ЯрГУ)

Раскладывая решения (10) в ряды по соз $k\pi x$, $k \in \mathbb{N} \cup \{0\}$, получаем, что устойчивость однородного цикла определяется собственными числами семейства матриц

$$-\begin{pmatrix} 1+ic_2 & 1+ic_2\\ 1-ic_2 & 1-ic_2 \end{pmatrix} - k^2 \pi^2 \nu \begin{pmatrix} 1-ic_1 & 0\\ 0 & 1+ic_1 \end{pmatrix}, \quad k = 1, 2, \dots \quad (11)$$

Анализ матриц (11) условии (9) позволяет показать, что цикл (10) в задаче (8) устойчив (неустойчив), если $uu_*>0\,(<0),$ где

$$\nu_* = \frac{2(c_1c_2 - 1)}{\pi^2(1 + c_1^2)} > 0.$$
(12)

Раскладывая решения (10) в ряды по соз $k\pi x$, $k \in \mathbb{N} \cup \{0\}$, получаем, что устойчивость однородного цикла определяется собственными числами семейства матриц

$$-\begin{pmatrix} 1+ic_2 & 1+ic_2\\ 1-ic_2 & 1-ic_2 \end{pmatrix} - k^2 \pi^2 \nu \begin{pmatrix} 1-ic_1 & 0\\ 0 & 1+ic_1 \end{pmatrix}, \quad k = 1, 2, \dots \quad (11)$$

Анализ матриц (11) условии (9) позволяет показать, что цикл (10) в задаче (8) устойчив (неустойчив), если $u -
u_* > 0 \, (< 0)$, где

$$\nu_* = \frac{2(c_1c_2 - 1)}{\pi^2(1 + c_1^2)} > 0.$$
(12)

Численный анализ

Чтобы описать соответствующий численный эксперимент введем в рассмотрение точки x = (j - 1/2)/N, j = 1, 2, ..., N, где N целое. производные по x в этих точках заменим на следующие приближенные выражения:

$$w_{xx}(t,x)|_{x=(j-1/2)/N} \approx N^2 (w_{j+1}(t) - 2w_j(t) + w_{j-1}(t)),$$

$$w_j(t) = w(t,x)|_{x=(j-1/2)/N},$$
(13)

краевые условия заменим на $w_0(t) = w_1(t)$ and $w_{N+1}(t) = w_N(t)$. В результате получаем конечномерную модель

$$\dot{w}_{j} = \nu N^{2} (1 - ic_{1}) (w_{j+1} - 2w_{j} + w_{j-1}) + w_{j} - (1 + ic_{2}) |w_{j}|^{2} w_{j}, \quad j = 1, \dots, N.$$
(14)

Численный анализ

С. Д. Глызин (ЯрГУ)

Чтобы описать соответствующий численный эксперимент введем в рассмотрение точки x = (j - 1/2)/N, j = 1, 2, ..., N, где N целое. производные по x в этих точках заменим на следующие приближенные выражения:

$$w_{xx}(t,x)|_{x=(j-1/2)/N} \approx N^2 (w_{j+1}(t) - 2w_j(t) + w_{j-1}(t)),$$

 $w_j(t) = w(t,x)|_{x=(j-1/2)/N},$
(13)

краевые условия заменим на $w_0(t) = w_1(t)$ and $w_{N+1}(t) = w_N(t)$. В результате получаем конечномерную модель

$$\dot{w}_{j} = \nu N^{2} (1 - ic_{1}) (w_{j+1} - 2w_{j} + w_{j-1}) + w_{j} - (1 + ic_{2}) |w_{j}|^{2} w_{j}, \quad j = 1, \dots, N.$$
(14)

В системе (15) сохраняется симметрия задачи (8). Она инвариантна относительно замены

$$w_j \to w_{N-j+1}, \ j=1,\ldots,N. \tag{15}$$

Как и исходная краевая задача (8), эта система имеет пространственно однородный, или точнее синхронный цикл

$$w_1 = w_2 = \ldots = w_N = \exp(-ic_2 t).$$
 (16)

伺下 イヨト イヨト

В системе (15) сохраняется симметрия задачи (8). Она инвариантна относительно замены

$$w_j \to w_{N-j+1}, \ j=1,\ldots,N. \tag{15}$$

Как и исходная краевая задача (8), эта система имеет пространственно однородный, или точнее синхронный цикл

$$w_1 = w_2 = \ldots = w_N = \exp(-ic_2 t).$$
 (16)

С. Д. Глызин (ЯрГУ)

Цикл (17) орбитально экспоненциально устойчив (не устойчив), если $\nu - \nu_*(N) > 0 \ (< 0)$, где $\nu_*(N)$ задано аналогичными (12) формулами

$$\nu_*(N) = \frac{c_1 c_2 - 1}{2(1 + c_1^2)N^2 \sin^2\left(\pi/(2N)\right)},$$
(17)

Очевидно, $\nu_*(N) \rightarrow \nu_*$ при $N \rightarrow \infty$. В частности, для N = 20 и для $c_1 = 4.129$, и $c_2 = 1.2053$ имеем $\nu_* \approx 0.044647$, а $\nu_*(20) \approx 0.044739$. Это показывает, что для ν , близких к критическим значениям, модель (15) адекватно описывает краевую задачу (8).

Система (15) решалась численно при условии (13) для значений параметров 5 \leq N \leq 100 и 0 \leq ν \leq 0.004 с помощью пакета Tracer 3.70, разработанного Глызиным Д.С.

Цикл (17) орбитально экспоненциально устойчив (не устойчив), если $u - \nu_*(N) > 0 \, (<0)$, где $\nu_*(N)$ задано аналогичными (12) формулами

$$\nu_*(N) = \frac{c_1 c_2 - 1}{2(1 + c_1^2) N^2 \sin^2\left(\pi/(2N)\right)},$$
(17)

Очевидно, $\nu_*(N) \rightarrow \nu_*$ при $N \rightarrow \infty$. В частности, для N = 20 и для $c_1 = 4.129$, и $c_2 = 1.2053$ имеем $\nu_* \approx 0.044647$, а $\nu_*(20) \approx 0.044739$. Это показывает, что для ν , близких к критическим значениям, модель (15) адекватно описывает краевую задачу (8).

Система (15) решалась численно при условии (13) для значений параметров 5 \leq N \leq 100 и 0 \leq u \leq 0.004 с помощью пакета Tracer 3.70, разработанного Глызиным Д.С.

Цикл (17) орбитально экспоненциально устойчив (не устойчив), если $u - \nu_*(N) > 0 \ (< 0)$, где $\nu_*(N)$ задано аналогичными (12) формулами

$$\nu_*(N) = \frac{c_1 c_2 - 1}{2(1 + c_1^2) N^2 \sin^2\left(\pi/(2N)\right)},$$
(17)

Очевидно, $\nu_*(N) \rightarrow \nu_*$ при $N \rightarrow \infty$. В частности, для N = 20 и для $c_1 = 4.129$, и $c_2 = 1.2053$ имеем $\nu_* \approx 0.044647$, а $\nu_*(20) \approx 0.044739$. Это показывает, что для ν , близких к критическим значениям, модель (15) адекватно описывает краевую задачу (8).

Система (15) решалась численно при условии (13) для значений параметров $5 \le N \le 100$ и $0 \le \nu \le 0.004$ с помощью пакета Tracer 3.70, разработанного Глызиным Д.С.

ヘロト 不得下 不可下 不可下

Было показано, что при прохождении ν через бифуркационные значения от пространственно однородного цикла ответвляются два симметричных друг другу устойчивых цикла. При дальнейшем уменьшении параметра поведение системы становится более сложным, возникают хаотические колебания. Визуальное представление об этом дает график старшего ляпуновского показателя $\lambda_{\max}(A_{\nu}(N))$ и ляпуновской размерности $d_L(A_{\nu}(N))$ аттрактора $A_{\nu}(N)$ для системы (15). N=20

С. Д. Глызин (ЯрГУ)

N=30

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

С. Д. Глызин (ЯрГУ)

Покажем теперь, что при увеличении N аттрактор $A_{\nu}(N)$ системы (15) в некотором смысле сходится к аттрактору A_{ν} краевой задачи (8). Вычисления показали, что при фиксированном ν и увеличении размерности N величины $\lambda_{\max}(A_{\nu}(N))$ и $d_L(A_{\nu}(N))$ стабилизируются. Таким образом, численный анализ показал, что ляпуновская размерность $d_L(A_{\nu})$ хаотического аттрактора A_{ν} задачи (8) растет при $\nu \to 0$. Это означает, что при условии (13), изучаемая задача принадлежит классу B.

$\nu = 0.0025$

С.Д.Глызин (ЯрГУ)

Лногомодовый диффузионный хаос

v=0.002

С.Д.Глызин (ЯрГУ)

Иногомодовый диффузионный хаос

$\nu = 0.0015$

С.Д.Глызин (ЯрГУ)

Иногомодовый диффузионный хаос

Конечно- разностная модель фазовой турбулентности

Приведенный выше анализ показал, что для всех достаточно больших N, система (15) с фиксированным $\nu > 0$ является вполне адекватной моделью задачи (8). При этом численный экперимент показал, что при уменьшении $\nu \lambda_{\max}(A_{\nu}(N))$ и $d_L(A_{\nu}(N))$ стабилизируются при все больших и больших N. Если же N фиксировано, а ν мало, тодинамические свойства системы (15) перестают соответствовать свойствам задачи (8). Это выражается в наличии провалов на графиках $\lambda_{\max}(A_{\nu}(N))$ и $d_L(A_{\nu}(N))$ при $0 \leq \nu \leq 0.0004$, для N = 20 и при $0 \le \nu \le 0.0002$, для N = 30 (see Figs. 1, 2). Отметим, что для распределенной задачи (8), $d_L(A_
u) \to +\infty$, $\lambda_{\max}(A_
u) \to \lambda_{\max}^0$ при $\nu \rightarrow 0$, где $\lambda_{\max}^0 \approx 0.25$.

Несмотря на это изучение аттракторов системы (15) при фиксированном N и при $\nu \ll 1$ представляет самостоятельный интерес. Связано это с тем, что в данном диапазоне параметров в ней наблюдается весьма интересное явление, получившее в физической литературе название "фазовая турбулентность" (см., например, [A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge Univ. Press, Cambridge, 2001; Tekhnosfera, Moscow, 2003)]; [M. I. Rabinovich, A. L. Fabrikant, and L. Sh. Tsimring, "Finite-Dimensional Spatial Chaos," Usp. Fiz. Nauk 162 (8), 1–42 (1992)].).

Для описания феномена фазовой турбулентности прежде всего убедимся в том, что при всех достаточно малых $\nu > 0$ система (15) имеет глобально экспоненциально устойчивый *N*-мерный инвариантный тор T_N . С этой целью сделаем в ней замены $w_j = \rho_j \exp(i\tau_j), j = 1, \ldots, N$, где $\rho_j > 0, 0 \le \tau_j \le 2\pi \pmod{2\pi}$. В результате она преобразуется к виду

・ロト ・四ト ・ヨト ・ヨト

Несмотря на это изучение аттракторов системы (15) при фиксированном N и при $\nu \ll 1$ представляет самостоятельный интерес. Связано это с тем, что в данном диапазоне параметров в ней наблюдается весьма интересное явление, получившее в физической литературе название "фазовая турбулентность" (см., например, [А. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge Univ. Press, Cambridge, 2001; Tekhnosfera, Moscow, 2003)]; [M. I. Rabinovich, A. L. Fabrikant, and L. Sh. Tsimring, "Finite-Dimensional Spatial Chaos," Usp. Fiz. Nauk 162 (8), 1–42 (1992)].).

Для описания феномена фазовой турбулентности прежде всего убедимся в том, что при всех достаточно малых $\nu > 0$ система (15) имеет глобально экспоненциально устойчивый *N*-мерный инвариантный тор T_N . С этой целью сделаем в ней замены $w_j = \rho_j \exp(i\tau_j), j = 1, \ldots, N$, где $\rho_j > 0, 0 \le \tau_j \le 2\pi \pmod{2\pi}$. В результате она преобразуется к виду

・ 通 ト ・ ヨ ト ・ ヨ ト

$$\dot{\rho}_{j} = \nu N^{2} \Big[\rho_{j+1} \cos \alpha_{j} - 2\rho_{j} + \rho_{j-1} \cos \alpha_{j-1} + c_{1}(\rho_{j+1} \sin \alpha_{j} - \rho_{j-1} \sin \alpha_{j-1}) \Big] + \rho_{j} - \rho_{j}^{3}, \quad j = 1, \dots, N,$$

$$\dot{\alpha}_{j} = -c_{2}(\rho_{j+1}^{2} - \rho_{j}^{2}) + \nu N^{2} \Big[\frac{\rho_{j+2}}{\rho_{j+1}} \sin \alpha_{j+1} - - \Big(\frac{\rho_{j}}{\rho_{j+1}} + \frac{\rho_{j+1}}{\rho_{j}} \Big) \sin \alpha_{j} + \frac{\rho_{j-1}}{\rho_{j}} \sin \alpha_{j-1} - (19) \\ -c_{1} \left(\frac{\rho_{j+2}}{\rho_{j+1}} \cos \alpha_{j+1} + \Big(\frac{\rho_{j}}{\rho_{j+1}} - \frac{\rho_{j+1}}{\rho_{j}} \Big) \cos \alpha_{j} - \frac{\rho_{j-1}}{\rho_{j}} \cos \alpha_{j-1} \Big) \Big], \quad (19)$$

$$-c_{1} \left(\frac{\rho_{N-1}}{\rho_{N}} \cos \alpha_{j+1} + \Big(\frac{\rho_{N-1}}{\rho_{N}} - \frac{\rho_{N-1}}{\rho_{N}} \Big) \cos \alpha_{j} - \frac{\rho_{j-1}}{\rho_{j}} \cos \alpha_{j-1} \Big) \Big], \quad (19)$$

$$here \tau_{0} = \tau_{1}, \tau_{N+1} = \tau_{N}, \rho_{0} = \rho_{1}, \rho_{N+1} = \rho_{N}, \alpha_{j} = \tau_{j+1} - \tau_{j}.$$

W

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣A⊙

Нетрудно заметить, что интересующий нас глобально устойчивый инвариантный тор заведомо существует у данной системы при $\nu = 0$. Он задается равенствами $\rho_j = 1, j = 1, \ldots, N$, а поведение траекторий на нем описывают уравнения $\dot{\alpha}_j = 0, j = 1, \ldots, N - 1, \dot{\tau}_N = -c_2$. Указанный тор сохраняется у системы (18) – (20) при всех достаточно малых $\nu > 0$, причем теперь он имеет вид

$$T_{N}: \ \rho_{j} = 1 + \nu \,\psi_{j}(\alpha_{1}, \dots, \alpha_{N-1}, \nu), \ j = 1, \dots, N,$$
(21)

где достаточно гладкие по совокупности переменных 2π -периодические по $lpha_k,\,k=\,1,\ldots,N-1$ функции ψ_j таковы, что

$$\psi_j(\alpha_1,\ldots,\alpha_{N-1},0) = \frac{N^2}{2} \Big(\cos\alpha_j - 2 + \cos\alpha_{j-1} + c_1(\sin\alpha_j - \sin\alpha_{j-1})\Big),$$

$$j = 1,\ldots,N.$$
(22)

Нетрудно заметить, что интересующий нас глобально устойчивый инвариантный тор заведомо существует у данной системы при $\nu = 0$. Он задается равенствами $\rho_j = 1, j = 1, \ldots, N$, а поведение траекторий на нем описывают уравнения $\dot{\alpha}_j = 0, j = 1, \ldots, N - 1, \dot{\tau}_N = -c_2$. Указанный тор сохраняется у системы (18) – (20) при всех достаточно малых $\nu > 0$, причем теперь он имеет вид

$$T_N: \ \rho_j = 1 + \nu \, \psi_j(\alpha_1, \dots, \alpha_{N-1}, \nu), \ j = 1, \dots, N,$$
(21)

где достаточно гладкие по совокупности переменных 2π -периодические по $lpha_k, \, k=\, 1,\ldots, N-1$ функции ψ_j таковы, что

$$\psi_j(\alpha_1,\ldots,\alpha_{N-1},0) = \frac{N^2}{2} \Big(\cos\alpha_j - 2 + \cos\alpha_{j-1} + c_1(\sin\alpha_j - \sin\alpha_{j-1})\Big),$$

$$j = 1,\ldots,N.$$
(22)

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Движения на торе описываются системой

$$\dot{\alpha}_{j} = \nu \, \Phi_{j}(\alpha_{1}, \dots, \alpha_{N-1}, \nu), \quad j = 1, \dots, N-1, \\ \dot{\tau}_{N} = -c_{2} + \nu \, \Psi(\alpha_{1}, \dots, \alpha_{N-1}, \nu).$$
(23)

Отметим, что из (22) следует, что

$$\Phi_{j}\big|_{\nu=0} = -N^{2} \Big[(c_{1}c_{2} - 1)(\sin \alpha_{j+1} - 2\sin \alpha_{j} + \sin \alpha_{j-1}) + (c_{1} + c_{2})(\cos \alpha_{j+1} - \cos \alpha_{j-1}) \Big], \quad j = 1, \dots, N-1.$$
(24)

3

イロト イロト イヨト イヨト

Движения на торе описываются системой

$$\dot{\alpha}_{j} = \nu \, \Phi_{j}(\alpha_{1}, \dots, \alpha_{N-1}, \nu), \quad j = 1, \dots, N-1, \\ \dot{\tau}_{N} = -c_{2} + \nu \, \Psi(\alpha_{1}, \dots, \alpha_{N-1}, \nu).$$
(23)

Отметим, что из (22) следует, что

$$\Phi_{j}\big|_{\nu=0} = -N^{2}\Big[(c_{1}c_{2}-1)(\sin \alpha_{j+1}-2\sin \alpha_{j}+\sin \alpha_{j-1})+ \\ +(c_{1}+c_{2})(\cos \alpha_{j+1}-\cos \alpha_{j-1})\Big], \ j=1,\ldots,N-1.$$
(24)

3

(日本) (日本) (日本)

Убедимся, что при условии (13) на параметры c_1 , c_2 , при $0 < \nu \ll 1$ и при любом фиксированном $5 \le N \le 31$ инвариантный тор T_N является носителем хаотического аттрактора. Для этого рассмотрим отщепляющуюся от (23) систему для α_j , $j = 1, \ldots, N-1$, выполним в ней замену времени $\nu N^2(c_1c_2-1)t \to t$ и отбросим в правых частях получившейся системы слагаемые порядка малости ν и выше. В результате с учетом равенств (24) она преобразуется к виду

$$\dot{\alpha}_j = -(\sin \alpha_{j+1} - 2\sin \alpha_j + \sin \alpha_{j-1}) - \varkappa (\cos \alpha_{j+1} - \cos \alpha_{j-1}),$$

$$j = 1, \dots, N-1,$$
(25)

где
$$\alpha_0 = \alpha_N = 0$$
, $\varkappa = (c_1 + c_2)/(c_1c_2 - 1)) \approx 1.341373.$

Численный анализ системы (25) при 5 $\leq N \leq$ 31 показал, что она действительно имеет хаотический аттрактор A_N , ляпуновская размерность $d_L(A_N)$ которого с ростом N растет примерно по линейному закону. Убедимся, что при условии (13) на параметры c_1 , c_2 , при $0 < \nu \ll 1$ и при любом фиксированном $5 \le N \le 31$ инвариантный тор T_N является носителем хаотического аттрактора. Для этого рассмотрим отщепляющуюся от (23) систему для α_j , $j = 1, \ldots, N-1$, выполним в ней замену времени $\nu N^2(c_1c_2-1)t \to t$ и отбросим в правых частях получившейся системы слагаемые порядка малости ν и выше. В результате с учетом равенств (24) она преобразуется к виду

$$\dot{\alpha}_j = -(\sin \alpha_{j+1} - 2\sin \alpha_j + \sin \alpha_{j-1}) - \varkappa (\cos \alpha_{j+1} - \cos \alpha_{j-1}),$$

$$j = 1, \dots, N-1,$$
(25)

где
$$\alpha_0 = \alpha_N = 0$$
, $\varkappa = (c_1 + c_2)/(c_1c_2 - 1)) \approx 1.341373.$

Численный анализ системы (25) при 5 $\leq N \leq$ 31 показал, что она действительно имеет хаотический аттрактор A_N , ляпуновская размерность $d_L(A_N)$ которого с ростом N растет примерно по линейному закону.

С. Д. Глызин (ЯрГУ)

Иногомодовый диффузионный хаос

Итак, мы видим, что при $N \sim 1$, $\nu \ll 1$ функционирование системы (15) происходит в режиме фазовой турбулентности. Действительно, согласно равенствам (21) на ее аттракторе A_N амплитуды $\rho_j = |w_j|$, $j = 1, \ldots, N$ с течением времени остаются практически постоянными, в то время как разности фаз $\alpha_j = \tau_{j+1} - \tau_j$ меняются существенно и согласно (25) эволюционируют по хаотическому закону. Напомним, что именно такое поведение траекторий и принято считать фазовой турбулентностью. Саму же систему (25) в связи с этим уместно назвать конечномерной моделью данного феномена.

Завершая обсуждение проблемы фазовой турбулентности, отметим, что модельная система (25) является в определенном смысле универсальной, так как возникает не только при анализе системы (15), но и при рассмотрении цепочек диффузионно связанных гармонических осцилляторов различной природы.

- 4 同 6 4 日 6 4 日 6

Итак, мы видим, что при $N \sim 1$, $\nu \ll 1$ функционирование системы (15) происходит в режиме фазовой турбулентности. Действительно, согласно равенствам (21) на ее аттракторе A_N амплитуды $\rho_j = |w_j|$, $j = 1, \ldots, N$ с течением времени остаются практически постоянными, в то время как разности фаз $\alpha_j = \tau_{j+1} - \tau_j$ меняются существенно и согласно (25) эволюционируют по хаотическому закону. Напомним, что именно такое поведение траекторий и принято считать фазовой турбулентностью. Саму же систему (25) в связи с этим уместно назвать конечномерной моделью данного феномена.

Завершая обсуждение проблемы фазовой турбулентности, отметим, что модельная система (25) является в определенном смысле универсальной, так как возникает не только при анализе системы (15), но и при рассмотрении цепочек диффузионно связанных гармонических осцилляторов различной природы.

▲圖▶ ▲ 国▶ ▲ 国▶

Спасибо за внимание!

3

・ロト ・聞 と ・ ヨ と ・ ヨ と …