Течения в пограничных слоях вдоль поверхностей с малыми неровностями

Р. К. Гайдуков^{1,2}, В. Г. Данилов²

$^1 {\sf M}{\sf o}{\sf c}{\sf к}{\sf o}{\sf b}{\sf c}{\sf k}{\sf n}{\sf n}$ Технический Университет Связи и Информатики $^2 {\sf H}{\sf N}{\sf Y}$ «Высшая Школа Экономики»

Мы рассматриваем течение несжимаемой вязкой жидкости при больших значениях числа Рейнольдса ${f Re}$ в различных задачах:

1 вдоль пластины с малыми периодически-

ми неровностями на поверхности

 $S = \{ y_{\Gamma} = \varepsilon^{4/3} \mu_1(x, x/\varepsilon) \};$

2 в канале ширины l с течением Пуазейля внутри (исключая пограничный слой) и малыми периодическими неровностями на стенках $S = \{y_{\Gamma} = \varepsilon^{4/5} \mu_{\pm}(x, x/\varepsilon^{2/5}) \pm l/2\};$ 3 в аксиально-симметричной трубе радиуса R_0 с течением Пуазейля внутри (исключая пограничный слой) и малыми периодическими неровностями на стенке $S = \{y_{\Gamma} = \varepsilon^{4/5} \mu_2(x, x/\varepsilon^{2/5}) + R_0\}.$

Здесь ε — малый параметр, $\varepsilon = \mathbf{Re}^{-1/2}$, а все функции $\mu_i(x,\xi)$ - 2π -периодичные по ξ , гладкие и имеющие нулевое среднее. Все перечисленные задачи описывается системой уравнений Навье-Стокса и неразрывности

$$\langle \mathbf{U}, \nabla \rangle \mathbf{U} = -\nabla p + \varepsilon^2 \Delta \mathbf{U}, \qquad \langle \nabla, \mathbf{U} \rangle = 0.$$
 (1)

где $\mathbf{U} = (u, v)$ — вектор скорости, p — это давление, а ε — малый параметр, определенный ранее. Граничные условия при обтекании пластины имеют вид

$$\begin{split} \mathbf{U}\big|_{S} &= \mathbf{0}, \ \mathbf{U}\big|_{y \to \pm \infty} \to (1,0)^{\mathrm{T}}, \ \mathbf{U}\big|_{x \to -\infty} \to (1,0)^{\mathrm{T}}, \\ \partial_{y} u\big|_{y = 0, x < 0} &= 0, \ v\big|_{y = 0, x < 0} = 0. \end{split}$$

Граничные условия в задачах течения в канале и трубе имеют вид:

$$\mathbf{U}\Big|_{S} = \mathbf{0} \tag{2}$$

Определение 1.

Для любой 2π -периодической гладкой функции $g(x,\xi)$, определенной на $\mathbb{R}^n \times [0, 2\pi]$, мы определяем

(i) среднее значение по формуле $\overline{g}(x) \triangleq \frac{1}{2\pi} \int_{0}^{2\pi} g(x,\xi) d\xi$,

(ii) осциллирующую часть: $\widetilde{g}(x,\xi) \triangleq g(x,\xi) - \overline{g}(x).$

Определение 2.

Для любой 2π -периодической гладкой функции $\widetilde{g}(x,\xi)$, определённой на $\mathbb{R}^n \times [0,2\pi]$ и такой, что $\overline{g}(x,\xi) = 0$, мы определяем функцию $G(x,\xi) = \int_{-\infty}^{\xi} \widetilde{g}(x,\xi)$ так чтобы $\overline{G}(x,\xi) = 0$.

Двухпалубная структура пограничного слоя

Решение всех приведенных задач имеет одну и туже структуру при различных масштабах неровности, а именно — двухпалубную структуру пограничного слоя:

- тонкий погранслой около стенки (I), $\theta=z/arepsilon^{\sigma_1},\,\xi=x/arepsilon^{\sigma_3},$
- толстый погранслой (II), $au = z/arepsilon^{\sigma_2}, \ \xi = x/arepsilon^{\sigma_3},$
- и внешнюю область (III), $\xi = x/arepsilon^{\sigma_3}$ с невозмущенным

течением, где $z=y-y_{\Gamma}$ — новая вертикальная переменная, в в которой криволинейная граница $y=y_{\Gamma}$ становится плоской

Случай пластины	Случай канала (трубы)
$\sigma_1=4/3$, $\sigma_2=\sigma_3=1$	$\sigma_1 = 4/5, \ \sigma_2 = \sigma_3 = 2/5$

Например, в случае канала:

Отметим также, что в случае канала, пограничный слой у одной стенки не взаимодействует с погранслоем у другой стенки.

В силу этого, мы рассмотриваем пограничный слой только у нижней стенки (у верхней стенки все будет аналогично).

В случае аксиально-симметричной трубы пограничный слой не зависит от угла φ .

Асимптотическое решение задачи (1),(2)

Теорема 1. Асимптотическое решение задачи (1),(2) имеет вид $u = u_0 + \varepsilon^{\alpha_1} \left(u_1^{\mathrm{I}}(x,\xi,\theta) + u_1^{\mathrm{II}}(x,\xi,\tau) + u_1^{\mathrm{III}}(x,\xi,z) \right) + \mathcal{O}(\varepsilon^{\alpha_2}),$ $v = \varepsilon^{\beta_1} \left(v_2^{\mathrm{I}}(x,\xi,\theta) + \widetilde{v}_2^{\mathrm{II}}(x,\xi,\tau) \right) + \mathcal{O}(\varepsilon^{\beta_2}),$ $p = p_0 + \varepsilon^{\gamma_1} \widetilde{p}_2^{\mathrm{II}}(x,\xi,\tau) + \mathcal{O}(\varepsilon^{\gamma_2}),$

где функции с верхним индексом I определены в тонком погранслое, с II — в толстом, а с III — во внешней области.

Случай пластины	Случай канала (трубы)	
$\alpha_1 = 1/3$, $\alpha_2 = \beta_1 = \gamma_1 = 2/3$,	$\alpha_1 = 4/5, \ \alpha_2 = \beta_1 = 6/5,$	
$eta_2=1$, $\gamma_2=1$;	$\beta_2 = \gamma_1 = 8/5, \ \gamma_2 = 12/5;$	
$u_0 = 1 + f'(\tau/\sqrt{x})$;	$u_0 = \omega(z);$	
$u_1^{ m II}=\mu f''(au/\sqrt{x})/\sqrt{x}$;	$u_1^{\mathrm{II}} = 0;$	
$u_1^{\text{III}} = 0$, $p_0 = \text{const}$;	$u_1^{\text{III}} = \mu \omega'(z), \ p_0 = \hat{p}(x).$	
$f()$ $+$ $$ $ $ $ $		

где $f(\eta) - \phi$ ункция Блазиуса, а ω_0 - скорость течения Пуазейля, $\hat{p} = \bar{p} + \varepsilon^2 \bar{p} x$, $\bar{p} = \text{const}$, $\bar{\bar{p}} = \text{const}$. Функции u_1^{II} и u_1^{III} обусловлены лишь выпрямлением границы, т.е. течение в погранслое не вносит вклад в течение вне него.

Асимптотическое решение задачи (1),(2)

Теорема 1: течение в тонком погранслое

Функции u_1^* и v_2^* , описывающие течение в тонком пограничном слое,

$$u_1^* = u_1^{\mathrm{I}} + (\theta + \mu)Q, \quad v_2^* = v_2^{\mathrm{I}} + \widetilde{v}_2^{\mathrm{II}}(x,\xi,0),$$

где $Q = f''(0)/\sqrt{x}$ в случае пластины, и $Q = \omega'(0)$ в случае канала (трубы), являются решением следующей задачи

$$\begin{cases} \frac{\partial u_1^*}{\partial \xi} - \frac{\partial \mu}{\partial \xi} \frac{\partial u_1^*}{\partial \theta} + \frac{\partial v_2^*}{\partial \theta} = 0, \\ u_1^0 \left(\frac{\partial u_1^*}{\partial \xi} - \frac{\partial \mu}{\partial \xi} \frac{\partial u_1^*}{\partial \theta} \right) + v_2^* \frac{\partial u_1^*}{\partial \theta} = -\frac{\partial p_2}{\partial \xi} \Big|_{\tau=0} + \frac{\partial^2 u_1^*}{\partial \theta^2}, \end{cases}$$
(3)

$$\begin{split} u_1^*\big|_{\theta=0} &= v_2^*\big|_{\theta=0} = 0, \ \overline{v}_2^*\big|_{\theta\to\infty} \to 0, \ u_1^*\big|_{\xi} = u_1^*\big|_{\xi+2\pi}, \ v_2^*\big|_{\xi} = v_2^*\big|_{\xi+2\pi}, \\ & \left. \frac{\partial u_1^*}{\partial \theta} \right|_{\theta\to\infty} \to Q, \quad \left. \frac{\partial u_1^*}{\partial \xi} \right|_{\theta\to\infty} \to \frac{\partial \mu}{\partial \xi}Q. \end{split}$$

Асимптотическое решение задачи (1),(2)

Теорема 1: течение в толстом погранслое

Уравнения на функцию $\tilde{v}_2^{\rm II}$, описывающую осцилляции в толстом погранслое, различны для случаев канала (трубы) и пластины.

В случае канала — функция $\widetilde{v}_2^{\mathrm{II}}$ удовлетворяет уравнению Лапласа

$$\frac{\partial^2 \widetilde{v}_2^{\mathrm{II}}}{\partial \tau^2} + \frac{\partial^2 \widetilde{v}_2^{\mathrm{II}}}{\partial \xi^2} = 0,$$

а в случае пластины функция $\widetilde{v}_2^{\mathrm{II}}$ удовлетворяет уравнению типа Рэлея

$$\varepsilon^{1/3} \frac{\partial}{\partial t} \Delta \int \widetilde{v}_2^{II} + f'(\tau/\sqrt{x}) \Delta \widetilde{v}_2^{II} - \widetilde{v}_2^{II} \frac{f'''(\tau/\sqrt{x})}{x} = 0.$$

Граниные условия одинаковы для обоих случаев:

$$\widetilde{v}_2^{\mathrm{II}}\big|_{\tau=0} = \lim_{\theta \to \infty} \widetilde{v}_2^*, \quad \widetilde{v}_2^{\mathrm{II}}\big|_{\tau \to \infty} \to 0, \quad \widetilde{v}_2^{\mathrm{II}}\big|_{\xi} = \widetilde{v}_2^{\mathrm{II}}\big|_{\xi+2\pi}.$$

Давление в толстом погранслое $\widetilde{p}_2^{\mathrm{II}}$ определяется следующими формулами: для случая пластины:

$$\frac{\partial \widetilde{p}_2^{\text{II}}}{\partial \xi} = f'(\tau/\sqrt{x}) \frac{\partial \widetilde{v}_2^{\text{II}}}{\partial \tau} - \widetilde{v}_2^{\text{II}} \frac{f''(\tau/\sqrt{x})}{\sqrt{x}},$$

для случая канала:

$$\frac{\partial \widetilde{p}_2^{\text{II}}}{\partial \xi} = w'(0) \left[\tau \frac{\partial \widetilde{v}_2^{\text{II}}}{\partial \tau} - \widetilde{v}_2^{\text{II}} \right].$$

Моделирование течения в тонком погранслое

В качестве иллюстрации приведем результаты численного моделирование течения в тонком погранслое для случая канала.

Задачу (3) мы решаем методом установления; для численного решения мы использовали явную разностную схему.

В качестве функции, описывающей неровность мы выбрали $\mu(\xi) = A\cos\xi, \quad A = {\rm const.}$

Для определения стационарности получаемого решения мы определили функцию eps(t) в следующем виде:

$$\operatorname{eps}(t_k) = \max \bigg\{ \max_{i,j} |(u_1^0)_{ij}^{k+1} - (u_1^0)_{ij}^k|, \max_{i,j} |(v_2^0)_{ij}^{k+1} - (v_2^0)_{ij}^k| \bigg\}.$$

Мы считаем, что полученное решение стационарно, если

 $\forall \epsilon > 0 \quad \exists t^* > 0 : \| \operatorname{eps}(t) \| < \epsilon \quad \forall t > t^*.$

- Мы получили, что характер течения зависит от амплитуды A неровности, а именно существует некоторое значение A^* , такое, что при $A < A^*$ наблюдается ламинарное течение, а при $A > A^*$ течение становится вихревым.
- Также мы исследовали влияние ширины канала на характер течения: при увеличении ширины канала *l* критическая амплитуда *A** уменьшается.

Для амплитуды A = 0.3 функции μ и ширины канала l = 1 мы наблюдали ламинарное течение, которое с некоторого момента времени становится стационарным.

Для амплитуды A = 1 и ширины канала l = 1 в канале образуется вихрь, который исчезает спустя некоторое время, и начиная с некоторого момента времени течение становится ламинарным.

Моделирование течения в тонком погранслое Вихревое течение, амплитуда неровности A = 1, ширина канала l = 1

Для амплитуды A > 1 и ширины канала l = 1 сначала наблюдается формирование вихря (как для случая A = 1), но после его гибели возникает новый вихрь, и этот процесс продолжается некоторое время, после которого течение становится стационарным, но не ламинарным как в случае A = 1, т.е. стационарный вихрь в ямке, но неизвестно что произойдет с ним на «больших временах».

Моделирование течения в тонком погранслое Вихревое течение, амплитуда неровности A = 1.5, ширина канала l = 1

Моделирование течения в тонком погранслое Вихревое течение, амплитуда неровности A = 1.9, ширина канала l = 1

Моделирование течения в тонком погранслое Вихревое течение, амплитуда неровности A = 2.3, ширина канала l = 1, t > 0

Моделирование течения в тонком погранслое Влияние ширины канала, амплитуда неровности $A = 1, t = t^* > 0$

Следовательно, можно сделать вывод:

Критическая амплитуда A^* уменьшается при увеличении ширины канала l.

Асимптотическое решение задачи (1),(2) в толстом погранслое

Уравнения на функции $\tilde{v}_2^{\mathrm{II}}$, описывающие осцилляции в толстом слое различны для случаев канала (трубы) и пластины.

В случае канала функция $\widetilde{v}_2^{\mathrm{II}}$ удовлетворяет уравнению Лапласа

$$\frac{\partial^2 \widetilde{v}_2^{\mathrm{II}}}{\partial \tau^2} + \frac{\partial^2 \widetilde{v}_2^{\mathrm{II}}}{\partial \xi^2} = 0,$$

а в случае пластины функция $\widetilde{v}_2^{\rm II}$ удовлетворяет уравнению типа Рэлея

$$\varepsilon^{1/3} \frac{\partial}{\partial t} \Delta \int^{\xi} \widetilde{v}_2^{II} + f' \left(\tau / \sqrt{x} \right) \Delta \widetilde{v}_2^{II} - \widetilde{v}_2^{II} \frac{f''' \left(\tau / \sqrt{x} \right)}{x} = 0.$$

Граничные условия одинаковы для обоих случаев:

$$\widetilde{v}_2^{\mathrm{II}}\big|_{\tau=0} = \lim_{\theta \to \infty} \widetilde{v}_2^*, \quad \widetilde{v}_2^{\mathrm{II}}\big|_{\tau \to \infty} \to 0, \quad \widetilde{v}_2^{\mathrm{II}}\big|_{\xi} = \widetilde{v}_2^{\mathrm{II}}\big|_{\xi+2\pi}.$$

 Интерес представляет случай пластины, а именно – уравнение типа Рэлея

$$\varepsilon^{1/3} \frac{\partial}{\partial t} \Delta \int^{\xi} \widetilde{v}_{2}^{II} + f'(\tau/\sqrt{x}) \Delta \widetilde{v}_{2}^{II} - \widetilde{v}_{2}^{II} \frac{f'''(\tau/\sqrt{x})}{x} = 0, \quad (4)$$
$$\widetilde{v}_{2}^{II}|_{\tau=0} = \lim_{\theta \to \infty} \widetilde{v}_{2}^{*}, \quad \lim_{\tau \to \infty} \widetilde{v}_{2}^{II} = 0, \quad \widetilde{v}_{2}^{II}|_{\xi} = \widetilde{v}_{2}^{II}|_{\xi+2\pi},$$

где функция \widetilde{v}_2^* описывает течение в тонком погранслое, а функция $f(\gamma)$ — это функция Блазиуса.

- Нами получены условия существования и единственности стационарного решения уравнения (4).
- Отметим, что решение уравнения в тонком погранслое зависит от t, а решение уравнения (4) от времени $t' = \varepsilon^{-1/3}$. В силу этого возникает вопрос об устойчивости решения уравнения (4) на больших временах.

Стационарное решение уравнения типа Релея

Стационарное уравнение, отвечающее уравнению (4) имеет вид

$$\frac{1}{x}\frac{\partial^2 \widetilde{v}_2^{\text{II}}}{\partial \eta^2} + \frac{\partial^2 \widetilde{v}_2^{\text{II}}}{\partial \xi^2} - \frac{1}{x}\widetilde{v}_2^{\text{II}}U(\eta) = 0,$$
(5)

Потенциал $U(\eta) = f'''(\eta)/f'(\eta)$ представляет собой ямку глубины M и обладает следующими свойствами U(0) = 0, $U|_{\eta \to \infty} \to 0$, а $M \approx 0.1442$. Можно показать (разложив функцию \tilde{v}_2^{II} в ряд Фурье), что разрешимость этой задачи эквивалентна существованию собственных чисел оператора типа Шредингера на полуоси

$$\begin{cases} -\psi_k'' + U\psi_k = \lambda_k \psi_k, \\ \psi(0) = 0, \ \psi\big|_{\eta \to \infty} \to 0, \end{cases}$$
(6)

где $\lambda_k = -xk^2$, x — параметр (расстояние от края пластины).

Если x > M, то легко доказать, что собственных числе не существует, и исходная стационарная задача (5) имеет единственное решение

Следовательно, имеет единственное решение задача типа Рэлея (4), и можно доказать устойчивость.

Подробнее в:

DANILOV, V. G., GAYDUKOV, R. K. (2013) Oscillations in classical boundary layer for flow with double-deck boundary layers structure. *Proceedings of International Conference DAYS on DIFFRACTION 2013* 28–31.

Если $0 < x \le M$, то возможно существование собственных значений у задачи (6). В случае существования с.з., у задачи (5) может возникать нетривиальное решение, которое приводит к неединственности всей задачи, и по-видимому, к неустойчивости.

Известно, что если собственные значения задачи (6) существуют, то они отрицательные ($\lambda_k < 0$), а также справедлива оценка для количества собственных значений N_{λ} :

$$N_{\lambda} \le \int_0^{\infty} \eta |U(\eta)| \, d\eta \approx 1.23.$$

Это означает, что в такой потенциальной яме возможно существования лишь одного собственного значения. Нам удалось доказать, что собственного значения не существует.

Справедлива следующая теорема.

Теорема. Решение уравнения (4) существует и единственно при любых x > 0.

Моделирование течения в толстом погранслое Течение, вычисленное при x = 1 и x = 5.

- DANILOV, V.G., MASLOV, V.P., VOLOSOV, K.A. (1995) Mathematical Modeling of Heat and Mass Transfer Processes. Kluwer Academic Publishers.
- DANILOV, V.G. & MAKAROVA, M.V. (1994) Asymptotic and numerical analysis of the flow around a plate with small periodic irregularities. *Russian J. of Math. Phys.* 2, No. 1.
- DANILOV, V. G., GAYDUKOV, R. K. (2013) Oscillations in classical boundary layer for flow with double-deck boundary layers structure. *Proceedings of International Conference DAYS* on DIFFRACTION 2013 28–31.
- DANILOV, V. G., GAYDUKOV, R. K. Vortexes in the Prandtl boundary layer induced by irregularities on a plate // Russian Journal of Mathematical Physics (in print)

Спасибо за внимание!