Acceleration of general relativistic
MHD simulation algorithms
using GPU and OpenACC

Lev Barash!, Alexander Tchekhovskoy?

LNTO nm. JII. Jlannay
2 UC Berkeley

Tapyca, UKU PAH, 18 Hoabpa 2015 ropa

Beautiful & Challenging

Cygnus A galaxy
(radio, 6 and 20 cm)

('sqO Aei-x eipueyQ) uonoidep s sy

: M87 galax
'10° solar mass : 9 y
" black hole (radio, 20 cm)

Image courtesy of NRAO/AUI; R. Perley, C. Carilli & J. Dreher

(radio, 7 mm)

8002 '|e 12 18 |epn
usmQ ‘4 pue |NV/OViN

1 light year
1000 black hole radii

3000 light years

Supermassive Intermediate Stellar-mass
M ~10°""Mg M ~10°"° Mg M ~ few—10Mg

a Chandra XRC b &
; Chandra XRC

NASA

%
i

Intermediate-mass [- ¢
black holes/ULX?

Quasars/AGN

Black ’

: H Ole Daniel Price and Stephan Rosswog
yatson,

Stapelfeldt, o p— Binaries

J. Krist,

Gamma-ray
bursts

Burrows

NASA

Black Hole?
Neutron Star?

Stars Neutron Stars,White Dwarfs
M ~ Mqa

Black holes of all sizes produce jets. BHs come in two broad categories: supermassive,
with masses ranging between millions and billions of solar masses, and stellar-mass BHs, with
masses ranging from a few to tens of solar masses. Supermassive BHs are found at the centers
of AGN (panel (a)), and stellar-mass BHs are found in binary systems (panel (c¢)), or formed as a
result of binary neutron star mergers (panel (d)) and core collapse of massive stars that 1s thought
to give rise to GRBs (panel (e)).

Illustration of jet formation by magnetic fields

a b c d
B, > B, VAuid = Vfield

z

Pm = B /8
ttt

ekl ol ol S Pl 457 LMD B B M D M (D A 59 M A 4

Introduction

Recent years have seen great progress in understanding astrophysical systems,
their structure and dynamics. Examples of such systems include active galax-
ies that contain accreting black holes at their centers that sometimes produce
relativistic jets. Because such systems are highly nonlinear and involve dy-
namically important magnetic fields, they are notoriously difficult to describe
analytically. Therefore, large-scale 3D numerical simulations have been in-
strumental at advancing our understanding of such systems. In this work, we
describe an improvement to a numerical algorithm implemented in a massively
parallel code, which solves time-dependent general relativistic magnetized fluid
dynamics in 3D on a space-time of a spinning black hole. This code is based
on an open-source 2D serial code HARM2D (High Accuracy Relativistic Mag-
netohydrodynamics, Gammie et al., ApJ 579, p. 444-457, 2003). Using a code
of this type, important results have been obtained in the context of black hole
accretion and jets. However, the cost of such simulations is enormous: each
of them took about 1 million core-hours on modern CPUs. To make further
progress in our understanding of such systems requires substantial increase in
the amount of available computational resources, which, however, are scarce.

The algorithm

e shock-capturing Godunov-based scheme

e cvolves the GRMHD equations of motion in a conservative form

For instance, for the 1D case, the equations take a simple vector form:

oU(p) _ IF(p)

o ox ' (1)

where U is the vector of “conserved” quantities, e.g., energy density, momen-
tum density, particle number density, F is the corresponding vector of fluxes,
and p is the vector of primitive quantities, e.g., fluid pressure, velocity. To
evolve this vector equation, at each time step the right-hand side is evaluated,

and this is used to compute the value of the conserved quantity U at the new
time.

The algorithm

The fundamental GRMHD equations as used in the simulation
are the particle number conservation equation; the four energy mo-
mentum equations, written in a coordinate basis and using the MHD
stress energy tensor; and the induction equation, subject to the no-
monopoles constraint.

Vector of conserved variables: U = /—g(pu®, T}, T, B).

Primitive variables: P = (p,u,v*, BY).

Here p is rest-mass density, B* is magnetic field density, v* is the 3-
velocity, u is internal energy density, u* is 4-velocity, T' is the energy-
momentum tensor.

Advantages of the algorithm

It is one of the premier GRMHD codes in use today and has already led to several
important results on black hole accretion disks and relativistic jets.

e the code uses Kerr-Schild coordinates which allow the inner computational grid
boundary to be inside the black hole horizon. As a result, the inner boundary
is causally disconnected from the accretion flow and jet, so that the black hole
is properly treated as an event horizon.

e Unlike other codes, it can be used with arbitrary coordinates.

e The code is energy-conserving to machine precision. Energy conserving schemes
correctly capture (as gas internal energy) whatever magnetic field energy is lost
via reconnection or turbulent energy is lost at the grid scale. While all codes
generate a finite numerical (truncation) error, non-conservative codes can gen-
erate or lose arbitrary amounts of energy when making such errors. In contrast,
when a conservative code makes a truncation error, the error is limited by the
requirement to conserve energy — a manifestly physical requirement.

e the code has been especially designed to accurately handle strongly magnetized
regions. This allows us to simulate highly magnetized jets, as in gamma-ray
bursts.

The algorithm

step_ch() — handles the sequence of making the time step, the fixup
of unphysical values, and the setting of boundary conditions; also sets
the dynamically changing time step size;

advance () —responsible for what happens during a time step update,
including the flux calculation, the constrained transport calculation, the
finite difference form of the time integral, and the calculation of the
primitive variables from the updated conserved variables; also handles
the fix_flux() call that sets the boundary condition on the fluxes.
advance () is called from step_ch().

fluxcalc() — sets the numerical fluxes, evaluated at the cell bound-
aries using the slope limiter. Also performs the flux-averaging used to
preserve the V-B = 0 constraint. fluxcalc() is called from advance().

eVol () — evolves the electron entropy and updates it due to heating
and electron conduction eVol() is called from step_ch().

MPI code performance and scaling

Fig.3: The HARM code
shows excellent scaling on
the Stampede supercom-
puter. The plot shows
weak scaling for a tile size
of 163 cells when com-
piled using an Intel com-
piler with aggressive op-
timization options. The
speed of the code on a
single core is about 20, 000
zone-cycles per second.

per second

Zone — cycles

[—

<

o8]
T

| —

=

=1
T

109F

10°

ideal scaling

i-E Stampede scaling

10!

102 107
Number of cores

10?

Simulation of Black Hole Disk-Jet Connection

-20 -10 0 10 20 —20 -10 0 10 20 —20 -10 0 10 20 —20 -10 0 10 20

ol 2 Ir, el alr,

BUAEO

http://youtu.be/nRGCNaWST5Q

Employing GPU capabilities

Here, we adopt an alternative approach: leveraging the power of Graphical
Processing Units, or GPUs. Essentially high-end graphics cards allow to carry
out enormous amount of computing and are a highly competitive to CPUs.
We have used the OpenACC programming approach. It allows, with minor
modifications of a CPU-based source code, to obtain a highly portable code
which can offload the computations to a GPU. As we explain below, this gives
us a factor of 10 speedup compared to the CPU version, allowing a dramatic
increase in the computing abilities.

OpenACC directive-based programming model

OpenACC is a directive-based high level programming model targeting a
CPU + accelerator system, intentionally similar in many ways to OpenMP. It
is designed to do for accelerator programming systems what OpenMP does for
multicore systems. It hides or virtualizes those features of the system that can
be managed automatically by the system without performance penalty, and
exposes those features that must be managed by the programmer.

Advantages: OpenACC has demonstrated support for multiple devices,
and there is some initial evidence for performance portability across device
types. The same code can be successfully compiled and used for different
platforms, on pure CPUs or using accelerators of different types, etc.

Disadvantages: OpenACC is still relatively young. There are as yet no
available open-source implementations of the full language. Some critical fea-
tures are still under development, and there are some differences in how features
are implemented by different compilers, making portability across vendors an
issue. There are still some limitations. For example, using global arrays are not
supported in the device code for PGI OpenACC, so pointers of global arrays
should be transferred through function parameters.

Categories of OpenACC APIs

* Accelerator Parallel Region / Kernels Directives
* Loop Directives

 Data Declaration Directives

» Data Regions Directives

 Cache directives

» Wait / update directives

* Runtime Library Routines

* Environment variables

OpenACC Kernels Directive

* Defines a region of a program that is to be compiled into
a sequence of kernels for execution on the accelerator

» Each loop nest will be a different kernel
» Kernels launched in order in device
» Specified by:

— #pragma acc kernels [clause [,clause]...] new-line
structured block

OpenACC Loop Directive

» Used to describe what type of parallelism to use to
execute the loop in the accelerator.

» Can be used to declare loop-private variables, arrays
and reduction operations.
* Specified by:
— #pragma acc loop [clause [,clause]...] new-line
for loop

OpenACC Update Directive

» Used within a data region to update / synchronize the
values of the arrays on both the host or accelerator

* Specified by:

#pragma acc update [clause [,clause]...] new-line

* The clauses for the /$acc update directive are:
— host (list)
— device (list)
— If (condition)
— async [(scalar-integer-expression)]

OpenACC directives which were most commonly used by us:

#pragma
#pragma
#pragma
#pragma
#pragma
#pragma
#pragma

acc
accC
acc
accC
acc
accC
accC

routine

kernels present(varl,var2,...)

loop gang vector collapse(3) reduction(+:myvar) independent
enter data create(varl,var2,...)

exit data delete(varl,var2,...)

update host(varl,var2,...)

update device(varl,var2,...)

OpenACC performance and speed-up

Time in seconds needed for the first 40 steps
for the lattice 512 x 512 x 1.
CPU: Intel Xeon E5-2650v3, GPU: nVidia Tesla K40.

time(all) time(advance) time (fluxcalc)
gcce -03: 222.58 50.72 30.53
pgcc —-ta=host -03: 196.27 51.54 28.87

pgcc —-ta=tesla -03: 24.73 9.87 6.53

