Population annealing study of the frustrated Ising antiferromagnet on the stacked triangular lattice

Michal Borovský

Department of Theoretical Physics and Astrophysics, University of P. J. Šafárik in Košice, Slovakia

18th November 2015

イロト イヨト イヨト イヨト ヨー わへで

Collaboration

- Dr. Martin Weigel (Applied Mathematics Research Centre, Coventry University, UK)
- Dr. Lev Yu. Barash (Landau Institute for Theoretical Physics, Chernogolovka, Russia)
- Dr. Milan Žukovič (UPJŠ, Košice, Slovakia)

Outline

- **1** Population annealing
- 2 GPU realization of PA
- 3 Stacked triangular Ising antiferromagnet
- 4 Results
- 5 Conclusions and perspective

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Outline

1 Population annealing

- 2 GPU realization of PA
- 3 Stacked triangular Ising antiferromagnet

4 Results

5 Conclusions and perspective

Population annealing (PA)

K. Hukushima and Y. Iba, *Population Annealing and Its Application to a Spin Glass*, AIP Conf. Proc. 690, 200 (2003).

- suitable for systems with rough free energy surfaces (spin glasses, frustrated spin systems, complex biomolecular systems, etc.)
- used as an alternative to parallel tempering
- combination of simulated annealing, population algorithms and sequential Monte Carlo method
- provides a good estimate of free energy

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ ● ● ●

Population annealing Algorithm

initialize population of R_K replicas at $\beta_{K+1} = 0$

• for β_k from β_K to β_0 with step $\Delta\beta = \beta_k - \beta_{k+1}$

• partition function ratio: $Q_k = \frac{1}{\tilde{R}_{\beta_{k+1}}} \sum_{i=1}^{\tilde{R}_{\beta_{k+1}}} \exp\left[-\Delta\beta E_j\right]$

- for all replicas do:
 - normalize weights: $\tau_j = \frac{1}{Q_k} \exp \left[-\Delta \beta E_j\right]$
 - resampling: create $\mathcal{N}\left[\left(R_{\beta_k}/\tilde{R}_{\beta_{k+1}}\right)\tau_j\right]$ copies of replica $(\mathcal{N}[a]$ Poisson random variate with mean value a)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

- calculate new size of a population \tilde{R}_{β_k}
- equilibrate replicas for θ_k Monte Carlo sweeps
- calculate observables and the free energy:

$$-eta_k ilde{\mathsf{F}}(eta_k) = \ln \Omega + \sum_{I=K}^\kappa \ln Q_I$$

Outline

1 Population annealing

2 GPU realization of PA

3 Stacked triangular Ising antiferromagnet

4 Results

5 Conclusions and perspective

Michal Borovský — Population annealing study of the frustrated Ising antiferromagnet on the stacked triangular lattice 7/30

CPU vs. GPU Performance comparison

Michal Borovský — Population annealing study of the frustrated Ising antiferromagnet on the stacked triangular lattice 8/30

(a)

GPU CUDA architecture Schematic depiction

M. Weigel, Journal of Computational Physics 231 (2012) 30643082

(日) (四) (王) (王) (王)

CUDA program

Michal Borovský — Population annealing study of the frustrated Ising antiferromagnet on the stacked triangular lattice 10/30

Parallelizing the PA algorithm

2 levels of parallelism:

- over replicas $(\tau_i, Q) \rightarrow 1$ thread = 1 replica
- over spins of each replica (MC update, E, M) → 1 block of threads - 8x8x8 block-wise coalesced array of spin values; 1 block = 1 replica
- use of parallel reduction algorithm for summing over replicas/spin values/local energy contributions
- parallel generation of long sequences of pseudo-random numbers "cuRAND" Philox_4x32_10 ($p = 2^{128} \approx 10^{38}$)
- Boltzmann factor tabulation texture memory

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Outline

1 Population annealing

2 GPU realization of PA

3 Stacked triangular Ising antiferromagnet

4 Results

5 Conclusions and perspective

Michal Borovský — Population annealing study of the frustrated Ising antiferromagnet on the stacked triangular lattice 12/30

Stacked triangular Ising antiferromagnet Sublattice partition and hamiltonian

Hamiltonian:

$$H = -J_1 \sum_{\langle i,j \rangle} S_i S_j - J_2 \sum_{\langle i,j \rangle} S_i S_k$$

Sublattice:

---- Ja

J٦

 $S_i = \pm 1 \dots$ Ising spin variable $J_1 < 0 \dots$ antiferromagnetic intralayer (interchain) interaction

 $J_2 < 0 \dots$ antiferromagnetic interlayer (intrachain) interaction

Geometrical frustration:

Stacked triangular Ising antiferromagnet Kinetic freezing in a standard MCMC simulation

R.R. Netz and A.N. Berker, Phys. Rev. Lett. 66, 377 (1991).

 $J_1 = J_2$, 24x24x32 spins ($L_z = 32$ layers), 10⁵ MCMC sweeps (+20% for equilibration), $o_z = \sum_{k=1}^{L_z} (-1)^k S_k$, snapshot at $k_B T/|J_1| = 0.01$

intrachain staggered magnetization o,

イロト イヨト イヨト イヨト ヨー わへで

Outline

- 1 Population annealing
- 2 GPU realization of PA
- 3 Stacked triangular Ising antiferromagnet

4 Results

5 Conclusions and perspective

Michal Borovský — Population annealing study of the frustrated Ising antiferromagnet on the stacked triangular lattice 15/30

MCMC and PA comparison GS energy and configuration

$$J_1 = J_2$$
, 24x24x32 spins ($L_z = 32$ layers), snapshot at $k_B T/|J_1| = 0.1$

intrachain staggered magnetization o_

イロト イポト イヨト イヨト

Michal Borovský — Population annealing study of the frustrated Ising antiferromagnet on the stacked triangular lattice 16/30

MCMC and PA comparison Family entropy

W. Wang, J. Machta, and H. G. Katzgraber, Phys. Rev. E 92, 013303 (2015)

Family entropy: $S_f = -\sum_i \nu_i \ln \nu_i$ $\nu_i \dots$ fraction of the population with origin in the i-th replica $e^{S_f} \dots$ effective number of surviving families equilibration requirement: $e^{S_f} \ge 100$ (or $S_f \gtrsim 4.6$)

Number of unique GS configurations:

■ 171 (0.171% of the population size, e^{S_f} = 3.7375)

23 (0.23%,
$$e^{S_f} = 2.1845$$
)

32 (0.32%,
$$e^{S_f} = 1.5857$$
)

PA algorithm performance

Nvidia GTX Titan

24 <i>x</i> 24 <i>x</i> 32	$R = 10^{3}$	$R = 10^{4}$	$R = 10^{5}$
θ	t _{SF} [ns]	t _{SF} [ns]	t _{SF} [ns]
100	8.235	7.714	7.933
101	1.024	0.953	0.961
10 ²	0.308	0.276	0.269
10 ³	0.240	0.209	0.259
104	0.233	0.208	0.245
GPU memory used	17.62 MB	176.24 MB	1762.39 MB

Michal Borovský — Population annealing study of the frustrated Ising antiferromagnet on the stacked triangular lattice 18/30

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Outline

1 Population annealing

- 2 GPU realization of PA
- 3 Stacked triangular Ising antiferromagnet

4 Results

5 Conclusions and perspective

Conclusions and perspective

Conclusions:

- we created optimized parallel GPU program of the PA algorithm for the frustrated stacked triangular Ising antiferromagnet
- system reached GS (Wannier-like phase with antiferromagnetically ordered spin chains) even for relatively small R and θ
- equilibration criterion was not met in all simulations for a low-T region

Perspective:

- choice of more effective high quality PRNG
- parallel resampling of replicas in the GPU global memory
- adaptive inverse temperature step $\Delta \beta_k$ histogram overlap
- asynchronous multispin coding bitwise operations
- multi-histogram reweighting

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Thank you for your attention.

Michal Borovský — Population annealing study of the frustrated Ising antiferromagnet on the stacked triangular lattice 21/30

・ロト ・御 ト ・ ヨト ・ ヨト ・ ヨ

Michal Borovský — Population annealing study of the frustrated Ising antiferromagnet on the stacked triangular lattice 22/30

・ロト ・ ア・ ・ ヨト ・ ヨト ・ ヨ

Population annealing Weighted averaging

J. Machta, Population annealing with weighted averages: A Monte Carlo method for rough free energy landscapes, Phys.Rev.E 82, 026704 (2010)

- for not sufficient values of parameters $ilde{R}_k$, Δeta , $heta_k$ \Rightarrow bias
- lets consider a set of the M independent runs of the algorithm with observables $\tilde{A}_r(\beta)$ and free energies $\tilde{F}_r(\beta)$
- weighted averaging: $\bar{A}(\beta) = \sum_{r=1}^{M} \tilde{A}_{r}(\beta)\omega_{r}(\beta)$, where $\omega_{r}(\beta) = \frac{\exp[-\beta \tilde{F}_{r}(\beta)]}{\sum_{r=1}^{M} \exp[-\beta \tilde{F}_{r}(\beta)]}$.
- unbiased free energy: $-\beta \bar{F}(\beta) = \ln \left[\frac{1}{M} \sum_{r=1}^{M} \exp\left[-\beta \tilde{F}_{r}(\beta)\right]\right]$
- weighted averaging errors bootstrapping
- optimization minimize $Var(-\beta \tilde{F})$ using the same computational resources

h > 0GS configurations

h > 0Enthalpy per spin

Michal Borovský — Population annealing study of the frustrated Ising antiferromagnet on the stacked triangular lattice 25/30

・ロト ・西ト ・ヨト ・ヨト

æ

h>0Heat capacity

・ロ・・ (日・・ (日・・ (日・)

э

h > 0Total magnetization per spin

Michal Borovský — Population annealing study of the frustrated Ising antiferromagnet on the stacked triangular lattice 27/30

æ

h > 0Magnetic susceptibility

・ロト ・部ト ・ヨト ・ヨト

æ

h>0Ground state configurations

$$h/|J_1| = 1$$

 $h/|J_1| = 7$

$$h/|J_1| = 4$$

$$h/|J_1| = 7.5$$

h > 0Ground state configurations - degeneracy

