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We consider the boundary value problem from the population
dynamics

N = dAN + r(1 — N,_1)N, on =0,
o |50
where N = N(t,x) € R — population density; N;_; = N(t — 1, x);
x € Q C R?; A — Laplace operator; D — diffusion coefficient; r —
Malthusian coefficient of linear growth; v — the direction of the outer
normal to the border 0 of bounded flat area Q.

The objective is to detect and study the periodic and nonperiodic
complex modes at t > 1.
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Separately we consider the equation without diffusion:

N = r(1— Ne_1)N.

In this case, it is well known that a unit equilibrium state N =1

becomes unstable when r = 3.

If r > 7 then N = 1is unstable and it is a T-periodic mode
N(t+ T) = N(t).

It is proving analytically when r is close to 7, and numerically when
r>72+e.
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Now we assume that r > 7 or about 7, and we consider the problem
with diffusion:
. oN
N=dAN+r(l— N, )N, —| =0, (1)
o |50
Fix a parameter r. Then we have certainly a N =1 for r < 7, and
N(t,x) = N(t) — periodic spatially homogeneous solution otherwise.

If the diffusion d is large enough (d > 1) then the spatially
homogeneous solutions are certainly stable.

There is a critical diffusion decrit for which this stability is lost.

Vladimir Goryunov Spatially inhomogenious modes of logisti November 17-19, 2015 4 /18



In a numerical experiment we consider the area
Q={xeR?|0<x <1,0<x <1}.

The area Q is covered with a uniform grid with a step h = 0.01. The
values in the appropriate squares of area Q are considered identical
and are denoted as N;; (i, € [1, M], where M = 100). Then the
Laplace operator is replaced by its difference analogue

Ni—1j—2N;ij+ Niy1 N Nij1—=2N;ij+ Nija
h? h? ’
and the boundary value problem (1) is replaced by a system of

differential-difference equations with the following boundary
conditions:

AnNi,j =

Nio= N1, Niyy = Ni i1, Vi € [1, M],

Noj = Nuj, Nuj = Niryr, Vj € [1, M].
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Thus, given the step h = 0.01, we consider the system of 10000
equations with delay. In the process of computing the value of d is
varied.

As a numerical method for solving the system with initial conditions
Nij(s) = ¢ij(s),s € [-1,0], where ¢;(s) are continuous by s
functions, it was chosen the Dormand—Prince method of the fifth
order with variable length of the integration step.

The calculations were performed on a computing cluster of YSU
(MHUN «[AnckpeTHas u BBIMUCAUTENBHAS FEOMETPUSIS WM.

5.H. Oenone).
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Spiral waves
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Spiral wave generation by r =2 and d = 107*. Times
t = 10,48,99, 753.

Wandering of the spiral wave. Times t = 4713, 9807.
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Distribution of the average value of N;;
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Spiral wave generation by r =3 and d =5 % 107%. Times
t = 5.,25.83.
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Spiral wave generation through spontaneous self-organization by
r=2and d =3%107° Times t =
120,551, 2337,5415, 6138, 8006, 8146, 8515, 8768, 9952, 10010, 11200.
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Distribution of the average value of N;; in bubble structure
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Double spiral wav

t = 40,57, 145, 600 1600 2200 3400, 4880, 5442,5771,8173, 15000.

onby r=2and d =1x10"% Times
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Distribution of the average value of N;; in chaotic structure
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Coexistense of spiral wave and chaotic structure for a long time by
r=2and d=1%10"° Times

t = 410, 544,2370, 4630, 7460, 8302, 9280, 9960.
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Numerical artifacts by r =2 and d = 5% 107, Times
t = 202,598,917, 3691.
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Distribution of the average value of /;; in halo structure
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Thank you for attention!
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