УДК 629.78:520.224.7

КОСМИЧЕСКИЙ ЭКСПЕРИМЕНТ НА МЕЖДУНАРОДНОЙ КОСМИЧЕСКОЙ СТАНЦИИ ПО МОНИТОРИНГУ НЕБА В РЕНТГЕНОВСКОЙ ОБЛАСТИ СПЕКТРА

Н.П. Семена, И.В. Чулков, В.В. Акимов, В.В. Левин, М.В. Бунтов, А.Ю. Ткаченко, И.Ю. Лапшов, А.В. Шевченко, В.А. Арефьев, М.Н. Павлинский

Институт космических исследований РАН, Москва

Введение

Планируемый космический эксперимент «Монитор всего неба» (МВН) должен быть проведен на Международной космической станции (МКС) в 2006–2008 гг.

Основная научная цель эксперимента — регулярный обзор Галактики в жестком рентгеновском диапазоне энергий.

Для мониторинга предполагается использовать два широкоугольных рентгеновских телескопа СПИН-Х1/2 с кодированной апертурой и с детектором в виде многопроволочной пропорциональной камеры (МПК). Эти телескопы изготовлены в кооперации ИКИ — ОКБ «ААЛАМ» (г. Бишкек). Требуется некоторая доработка для их адаптации к условиям работы на МКС. Телескопы будут отправлены на транспортном грузовом корабле «Прогресс» и установлены космонавтами на универсальном посадочном месте для научной аппаратуры.

Для обеспечения электрического интерфейса с бортовыми системами МКС, накопления научной информации и управления телескопами будет использована бортовая информационноуправляющая система (БИУС), разработка которой ведется в отделе астрофизики высоких энергий ИКИ. В настоящее время изготовлен технологический образец прототипа БИУС в рамках проекта «Спектр-РГ». Для обеспечения возможности использования БИУС в составе МКС требуется доработка информационно-управляющей системы.

В данном проекте, помимо научной части, предполагается провести технологический эксперимент: в одном из двух теле-

скопов с кодированной апертурой позиционно-чувствительный детектор типа многопроволочной пропорциональной камеры будет заменен на многопиксельную матрицу из полупроводниковых детекторов на основе соединения CdZnTe. Такая замена расширит энергетический диапазон монитора и позволит оценить преимущество нового типа детекторов при использовании в космических условиях.

1. Цели и задачи космического эксперимента

Главной научной задачей МВН, устанавливаемого на МКС, является регулярный обзор Галактики (~83 % сферы) в жестком рентгеновском диапазоне с периодом в 72 дня.

Совместное использование многопиксельной CdZnTe-матрицы и многопроволочной пропорциональной камеры существенно расширяет возможности эксперимента. В дальнейшем при расширении энергетического диапазона MBH от 3–30 (МПК) до 15–150 кэВ (CdZnTe) с установкой многопиксельной полупроводниковой CdZnTe-матрицы станет возможным решать следующие научные задачи:

- традиционная задача эксперимента обзор всего неба в жестком рентгеновском диапазоне энергий;
- перспективные задачи, которые могут быть решены с помощью детектора:
 - обзор всего неба в линии ⁴⁴Ті (68 и 78 кэВ);
 - исследование жесткого рентгеновского спектра активных ядер галактик;
 - поиск и исследование циклотронных линий в излучении нейтронных звезд.

Одновременно будет поставлен технологический эксперимент по:

- отработке использования нового типа детекторов в условиях космоса и, в частности, на МКС;
- достижению высокого энергетического разрешения для данного типа детекторов, что позволит в дальнейшем использовать детектор для ядерных линий 68 и 78 кэВ.

В настоящее время первый и пока единственный рентгеновский телескоп с детектором на основе CdTe – ISGRI/IBIS работает на орбите в составе европейской обсерватории гамма-лучей INTEGRAL. Данный детектор имеет невысокое энергетическое разрешение. Следующий эксперимент (BAT/SWIFT), использующий многопиксельный детектор на основе CdZnTe, разработан в США. Он также имеет невысокое энергетическое разрешение.

Установка на МКС двух сонаправленых мониторов, в одном из которых в качестве детектора используется многопроволочная пропорциональная камера, а в другом — многопиксельный детектор на основе CdZnTe, позволит оценить преимущества нового детектора и повысит научную ценность эксперимента.

1.1. Обзор всего неба в жестком рентгеновском диапазоне энергий

К настоящему времени обзоры всего неба высокочувствительными приборами (единицы миллиКраб и лучше) выполнены практически для всех астрофизических диапазонов энергий. В мягком рентгене (0,2–2 кэВ) высокочувствительный обзор (до 0,05 мКраб) был проведен телескопом ROSAT (см., например, Вогс и др., 1999); в среднем (1–10 кэВ) — обзор HEAO-A1 (*Byd* и др., 1984) до сих пор остается наиболее чувствительным (0,3 мКраб), хотя имеет невысокое пространственное разрешение (~0,5×3°). В 2004 г. опубликованы результаты обзора всего неба с чувствительностью около 1 мКраб и пространственным разрешением 1°, выполненного обсерваторией RXTE в диапазоне энергий 3–20 кэВ (*Ревнивцев* и др., 2004). В гамма-диапазоне (~750 кэВ – 10 ГэВ) существуют обзоры, проведенные комплексом приборов COMPTEL и EGRET на спутнике CGRO (*Шонфелдер*, 1995; *Томпсон* и др., 1995).

Жесткий рентген (20–600 кэВ) — почти единственный диапазон энергий, в котором до сих пор не проведен достаточно чувствительный обзор всего неба. Предыдущий обзор всего неба в жестком рентгеновском диапазоне был проведен более двадцати лет назад в эксперименте HEAO-A4 (*Левайн* и др.,1984). Чувствительность этого обзора в диапазоне 13–180 кэВ составила ~17 мКраб, угловое разрешение хуже 1°. Каждый из источников наблюдался около одной недели раз в три месяца. За время этого обзора было зарегистрировано около 70 источников, известных по предыдущим наблюдениям в более мягком диапазоне, и только 14 из них детектировались в диапазоне 80–180 кэВ. При этом не было открыто ни одного нового источника. За прошедшие двадцать лет была предпринята только одна попытка обзора всего неба в жестком рентгеновском диапазоне. В эксперименте BATSE (спутник CGRO) для построения карты источников использовалось их затмение Землей (*Гриндлей* и др., 1996; *Шоу* и др., 2004). К сожалению, к настоящему времени опубликованы результаты, полученные по данным только за 500 дней непрерывного обзора небесной сферы, и чувствительность этого обзора также невелика — ~15 мКраб, угловое разрешение 2°. Данные за 9 лет проведения эксперимента на орбите все еще находятся в стадии обработки.

Этот пробел пытается восполнить работающая в настоящее время на орбите европейская обсерватория INTEGRAL, которая проводит обзор галактической плоскости в диапазоне 15– 200 кэВ. В сентябре этого года планируется запуск американского спутника SWIFT, одной из задач которого станет обзор всего неба в жестком рентгеновском диапазоне (10–150 кэВ).

Тем не менее задача обзора всего неба в жестком рентгеновском диапазоне остается актуальной, и обзор с чувствительностью лучше 10 мКраб и пространственным разрешением порядка половины угловой минуты будет достаточно конкурентоспособным.

1.2. Обзор всего неба в линии 44 Ті

Используемый в технологическом эксперименте детектор на основе CdZnTe должен обладать существенно лучшим спектральным разрешением, чем подобные детекторы проектов INTEGRAL и SWIFT. Планируется, что энергетическое разрешение прибора составит 1,5 кэВ на энергии 10 кэВ и 2,0 кэВ на энергии 60 кэВ. Это позволит провести обзор всего неба в линиях ⁴⁴Ti (68 и 78 кэВ) и поиск скрытых Сверхновых в галактической плоскости. Подобные линии наблюдались прибором COMPTEL (обсерватории CGRO) в направлении остатка Сверхновой Cas A (*Июдин* и др. ,1994, 1999).

1.3. Исследование жесткого рентгеновского спектра активных ядер галактик

Активные ядра галактик (AGN), исследованные в процессе эксперимента OSSE (Oriented Scintillation Spectrometer Experiment), имеют жесткий спектр с завалом на энергиях порядка

50—100 кэВ для Сейфертовских галактик (*Здзиарски* и др., 1995) или многокомпонентный нетепловой спектр, тянущийся до высоких энергий, — блазары. Чувствительность обзора порядка единиц миллиКраб должна позволить детектировать и исследовать спектральные характеристики всех известных Сейфертовских галактик из каталога, полученного в процессе американского эксперимента OSSE.

Еще одной важной задачей является детектирование и исследование скрытых и самопоглощенных AGN. Такие объекты это, в основном, Сейфертовские галактики 2-го типа — станут основной целью будущих высокочувствительных обзоров всего неба зеркальными рентгеновскими телескопами (ROSITA) в диапазоне энергий 2—10 кэВ. Однако при поглощении >10^{24–25}см⁻² завал на низких энергиях спектра AGN сдвигается до 5—10 кэВ, и их наблюдение становится возможным только приборами, работающими в жестком рентгеновском диапазоне.

1.4. Поиск и исследование циклотронных линий в излучении нейтронных звезд

Одним из основных объектов исследования монитора могут стать нейтронные звезды. Высокое спектральное разрешение позволит провести детальное исследование циклотронных линий, уточнить их форму и ширину. Положение и форма линии являются хорошим источником информации о напряженности магнитного поля и температуре электронов в области аккреции.

После регистрации возможной циклотронной линии в спектре пульсара Her X-1 (*Трюмпер* и др., 1977) подобные особенности в поглощении или излучении были обнаружены в спектрах нескольких десятков источников на энергиях 7–50 кэВ. Наблюдения на спутнике RXTE источника 4U 0115+63 (транзиентная массивная рентгеновская двойная с повторяемостью в 3 года) впервые дали свидетельства существования пяти гармоник в энергетическом спектре рентгеновского пульсара (*Хайндл* и др., 2000а).

Обсерватории BATSE (GRO), RXTE и ВерроSAX обнаружили новые транзиентные пульсары (см., например, *Хайндл* и др., 2000б). В настоящее время известно более 40 пульсаров с аккрецией, причем транзиентных среди них в два раза больше, чем постоянных (30 против 14). Кроме того, большой интерес вызывают обнаруженные спутником ВерроSAX барстеры с жестким хвостом в спектрах (*Haталуччи* и др., 2000).

1.5. Оценка эффективности новых детекторов

Установка на МКС телескопа с детектором на основе CdZnTe одновременно с телескопом, использующим позиционно-чувствительный детектор типа МПК, изготовленный по уже отработанной технологии, позволит провести проверку нового типа детектора в космосе и, в частности, в условиях МКС, а также проработать ряд технологических и эксплуатационных вопросов. Длительная эксплуатация CdZnTe-детекторов на МКС позволит, в частности, получить в условиях натурного эксперимента данные об интенсивности и спектре фоновых событий, влиянии активации кристаллов и об их поведении в условиях открытого космоса. Кроме того, в технологическом эксперименте планируется использовать следующее поколение детекторов на основе CdZnTe, обеспечивающих лучшее спектральное разрешение по сравнению с использующимися в настоящее время в приборах ISGRI и ВАТ. Данные такого технологического эксперимента найдут применение при подготовке новых исследований в области жесткого рентгеновского излучения как на МКС, так и на специализированных космических аппаратах.

Важной частью проекта МВН является возможность исследовать особенности обработки научных данных, получаемых детектором на основе CdZnTe. Результаты исследования найдут применение при планировании следующих экспериментов.

2. Комплекс аппаратуры для проведения эксперимента

2.1. Общая структура комплекса «Монитор всего неба»

В структуру комплекса МВН входят:

- модуль СПИН-Х1 (с многопроволочной пропорциональной камерой);
- модуль СПИН-Х2 (с многопиксельной CdZnTe-матрицей);
- блок сопряжения на базе бортовой информационно-управляющей системы (БИУС), размещенный вне гермоотсека;
- блок управления на базе мобильного ПК, размещенный внутри гермоотсека.

Рис. 1. Предлагаемая структура комплекса МВН

2.2. Модули СПИН-Х1, СПИН-Х2

2.2.1. Состав

Общий вид широкоугольного рентгеновского монитора (модулей СПИН-Х1/2) представлен на рис. 2.

Рис. 2. Широкоугольный рентгеновский монитор СПИН-Х

В состав модулей СПИН-Х1/2 входят детектирующая система и моноблок электроники. Детектирующая система (рис. 3) СПИН-Х1/2 использует принцип кодированной апертуры. Перед входным окном детектора на определенном расстоянии устанавливается кодирующая маска, состоящая из расположенных в псевдослучайной (адамаровской) последовательности прозрачных и непрозрачных элементов заданного размера (рис. 4). Боковые направления обзора закрывает алюминиевый тубус с медным покрытием на наружной стороне. СПИН-Х1 относится к системам с неполным кодированием, т.е. маска проецируется на детектор полностью, только если источник расположен на оси прибора. Математическая обработка позволяет восстановить исходное изображение неба по «кодированному» изображению. Схема детектирующей системы СПИН-Х показана на рис. 3. Прибор СПИН-Х1 имеет поле зрения 38° и угловое разрешение ~10', прибор СПИН-Х2 имеет поле зрения 48° и угловое разрешение ~27'.

Рис.3. Схема детектирующей системы СПИН-Х1/2

Рис. 4. Кодирующая маска

2.2.2. Детектор модуля СПИН-Х1

В качестве детектора модуля СПИН-Х1 используется многопроволочная пропорциональная позиционно-чувствительная камера (рис 5).

Рис. 5. Схема многопроволочной пропорциональной позиционно-чувствительной камеры

Корпус камеры изготовлен из титана. Входным окном служит бериллиевая пластина толщиной 100 мкм. Для компенсации внутреннего давления с внешней стороны входного окна установлена поддерживающая структура. Камера заполнена газовой смесью 85 % Хе + 10 % Аг + 5 % СО₂ при давлении 1,3 бар.

Система электродов МПК имеет два слоя, первый является спектрометрическим и позиционно-чувствительным («измерительный» слой), второй — только спектрометрическим, он служит для подавления фона заряженных частиц методом антисовпадений («антисовпадательный» слой). Первый слой имеет зону усиления и две дрейфовые зоны, второй — только зону усиления. При взаимодействии рентгеновских квантов и заряженных частиц с веществом, заполняющим МПК, в ее объеме появляются свободные электроны, дрейфующие к анодам. В зоне усиления происходит лавинообразное размножение электронов за счет ударной ионизации (эффект газового усиления).

Движение зарядов в камере приводит к наведению на анодных и катодных электродах импульсов тока, которые регистрируются зарядочувствительными усилителями. Энергии частиц определяются по амплитудам импульсов на анодах, координаты регистрации — по задержкам сигналов с катодных проволочек. Для этого катодные проволочки объединены в группы (страйпы) по шесть проволочек и между страйпами включены элементы линии задержки LC-типа. На краях анодной плоскости первого слоя установлены охранные проволочки для сглаживания краевых эффектов.

Энергетический диапазон СПИН-X1 3–30 кэВ. Детектор СПИН-X1 обеспечивает энергетическое разрешение 20 % на линии железа Fe⁵⁵ 5,9 кэВ и 14 % на линии Cd¹⁰⁹ 22 кэВ и пространственное разрешение ~0,5–0,6 мм.

2.2.3. Детектор модуля СПИН-Х2

В качестве детектора модуля СПИН-Х2 используется многоэлементная матрица на основе кристаллов CdZnTe. Общее количество элементов детектора — 1024 шт. (32×32). Размер каждого элемента — $4,1 \times 4,1 \times 2,0$ мм. Зазор между элементами — 0,6 мм.

Детектирующая плоскость (рис. 6) имеет квадратную форму 150,4×150,4 мм и набирается из 32 модулей детектирования (рис. 7), каждый из которых имеет формат 4×8 элементов и размер 18,3×36,6 мм.

Конструктивной основой детектирующего модуля является гибридная интегральная микросхема (содержит 32 детектора). Детектирующие модули монтируются на термостабилизированную алюминиевую плиту.

Рис. 6. Общий вид детектирующей плоскости модуля СПИН-Х2

Рис. 7. Общий вид модуля детектирования (4×8 элементов)

Основные характ	перистики модулей	і СПИН-Х1	и СПИН-Х2
1			

	Модуль	
	СПИН-Х1 с МПК	СПИН-X2 c CdZnTe
Тип прибора Ш	ирокоугольни	ый монитор
Принцип К	Кодированная	апертура
Расстояние между апертурой и детектором, мм	413	500
Угол зрения, град	38	48
Угловое разрешение, угл. мин	10	27
Энергетический диапазон, кэВ	3-30	15 - 150
Энергетическое разрешение детектора, %		
на 6 кэВ		
на 10 кэВ	18	15
Пространственное разрешение детектора, мм	0,5-0,6	4
Временное разрешение детектора, с	1/65536	_
Площадь детектора, см ²	225	226
Мертвое время, мкс	25	32
Скорость счета от источника в 1 Краб		
(на оси прибора)	220 отсч/с	_
Уровень фильтрации заряженных частиц, %	95	_

2.2.4. Моноблок электроники

Каждый из двух приборов СПИН-Х1/2 имеет свой моноблок электроники, который производит прием сигналов с детектора, амплитудно-цифровое преобразование, отбор событий, прием и расшифровку команд, выдачу телеметрии. Собственный объем памяти каждого из приборов СПИН-Х1/2 ограничен ~1 Мбайт, поэтому СПИН-Х1 использует для хранения накопленных данных БИУС. Научная информация накапливается в виде массива данных по каждому зарегистрированному фотону (энергия, координаты регистрации, время регистрации). Информация по каждому фотону занимает четыре двухбайтовых слова (64 бита).

2.3. Блоки сопряжения и управления

2.3.1. Назначение

Блок сопряжения MBH с бортовыми системами MKC и блок управления предназначены для управления MBH, сбора, накопления, хранения и передачи в радиоканал служебной и научной информации, полученной от MBH. Кроме этого блоки сопряжения включают программные средства для организации научного эксперимента.

2.3.2. Общая информация

Блоки сопряжения и управления являются доработанным вариантом бортовой информационно-управляющей системы (БИУС) проекта «Спектр-РГ», предназначенной для управления комплексом научной аппаратуры, в том числе и СПИН-Х. Общий вид БИУС представлен на рис. 8.

Рис. 8. Технологический образец БИУС

2.3.3. Устройство и функционирование БИУС

БИУС — электронный моноблок, включающий:

- процессорный модуль, который осуществляет ведущие функции контроллера на бортовой СРГ-шине, представляющей собой магистральный интерфейс КНА проекта «Спектр-РГ»;
- модуль интерфейса быстрой телеметрии для передачи информации с СРГ-шины в магистральный радиоканал КА (МРК);
- модуль интерфейсов медленной телеметрии;
- модуль источника питания.

БИУС, разработанный для использования в открытом космосе, выполняет следующие задачи:

• Передача кода бортового времени (КБВ) в приборы

Получаемый от служебных систем КА с периодом 125 мс код КБВ блок БИУС периодически (1 раз в 4 с) передает научным приборам.

• Передача управляющих кодовых слов (УКС) в приборы

БИУС принимает всю последовательность УКС, проверяет на наличие ошибок (по встроенной контрольной сумме) и передает непосредственно в приборы через СРГ-шину. Максимальная скорость передачи УКС составляет 10 шестнадцатибитных команд в минуту. УКС указывают на состояние КА (начало и конец переориентации, вхождение в радиационные пояса, а также наличие аварийных ситуаций на борту). После приема УКС и проверки по контрольной сумме БИУС передает команду приборам. БИУС передает некоторые команды сразу на СРГшину без какой-либо обработки. Команды, которые обрабатываются и исполняются внутри БИУС, на СРГ-шину не передаются.

• Передача научной информации в радиоканал

Блок БИУС организует передачу научной информации от научных приборов через МРК на Землю и в память другого прибора. Передача информации на Землю осуществляется в сеансах связи через интерфейс высокоинформативного канала, а из одного прибора в другой — как в сеансах связи, так и в сеансах наблюдений. Направление передачи научной информации (в радиоканал или в память другого прибора) определяется по УКС. • Сбор служебной информации с приборов КНА

Для контроля работоспособности приборов БИУС осуществляет сбор и временное хранение служебной информации с включенных научных приборов со скоростью 16 шестнадцатибитных слов 1 раз в 5 мин в сеансах наблюдений и 1 раз в 5 с в сеансах связи.

• Передача служебной информации КА

Блок БИУС осуществляет прием кадров медленной телеметрии, поступающей от КА, заполняет принимаемыми кадрами буфер 2 кбайт и по заполнении буфера передает либо в канал быстрой радиолинии (БРЛ) (в сеансах связи), либо в память прибора (в сеансах наблюдений). Длина кадра составляет 128 байт. Скорость передачи кадров не превышает 32 кбит/с.

• Организация управления СРГ-шиной

Блок БИУС осуществляет управление СРГ-шиной согласно протоколу ГОСТ 25765.52-89.

• Определение рассинхронизации меток 1 Гц относительно кода КБВ

Блок БИУС осуществляет определение времени рассинхронизации меток 1 Гц относительно моментов передачи кода КБВ. Величину рассинхронизации блок передает в канал медленной телеметрии. Передача выполняется 1 раз в 5 мин в сеансах наблюдений и 1 раз в 5 с в сеансах связи. Точность определения составляет 0,5 мс.

Литература

- Вогс и др. (Voges W., Aschenbach B., Boller Th. et al.) // A&A 1999. V. 349. P. 389.
- 2. *Вуд* и др. (Wood K.S., Meekins J.F., Yentis D.J. et al.) // ApJS. 1984. V. 56. P. 507.
- 3. *Гриндлей* и др. (Grindlay J.E., Barret D., Bloser P.F. et al.) // A&A. 1996. V. 120. Р. 145.
- 4. *Здзиарски* и др. (Zdziarski Andrzej A, Johnson W. Neil, Done Chris et al.) // ApJ Letters. 1995. V. 438. P. L63.
- 5. *Июдин* и др. (Iyudin A.F., Diehl R., Bloemen H. et al.) // A&A 1994. V. 284. P. L1.
- 6. *Июдин* и др. (Iyudin F.A, Schunfelder V., Bennett K. et al.) // ApL&C. 1999. V. 38. P. 383.

- Левайн и др. (Levine A.M., Lang F.L., Lewin W.H.G. et al.) // ApJ. Suppl. 1984. V. 54. P. 581.
- 8. *Наталуччи* и др. (Natalucci L., Bazzano A, Cocchi M. et al.) // ApJ. 2000. V. 543. P. L73.
- 9. *Ревнивцев* и др. (Revnivtsev M., Sazonov S., Jahoda K., Gilfanov M.) // A&A. 2004. V. 418. P. 927.
- 10. Шонфелдер (Schonfelder T.) // AdSpR. 1995. V. 15. N. 5. P. 5.
- 11. Томпсон и др. (Thompson D.J., Bertsch D.L., Dingus B.L. et al.) // ApJS.1995. V. 101. P. 259.
- 12. *Трюмпер* и др. (Truemper J., Sacco B., Pietsch W.J. et al.) // MitAG. 1977. P. 120.
- Хайндл и др. (Heindl W.A., Coburn W., Gruber D.E. et al.) // HEAD Meeting. Bulletin of the American Astronomical Society. 2000. V. 32. P. 1230.
- Хайндл и др. (Heindl W.A., Coburn W., Gruber D.E. et al.) // HEAD Meeting. Bulletin of the American Astronomical Society. 2000. V. 32. P. 1214.
- 15. Шоу и др. (Shaw S.E., Westmore M.J., Hill A.B. et al.) // A&A 2004. V. 418. P. 1187.