Методы численного моделирования актуальных задач, г. Таруса, 2009

### Компьютерное моделирование неравновесной критической динамики структурно неупорядоченных ферромагнетиков

Прудников Владимир Васильевич

кафедра теоретической физики, Омский государственный университет им. Ф.М. Достоевского

# Содержание

- Методы компьютерного моделирования фазовых переходов.
- Влияние дефектов структуры на критическое поведение.
- Неравновесная коротко-временная критическая динамика неупорядоченных систем.

Проблема описания фазовых переходов – одна из наиболее сложных и постоянно актуальных задач статистической теории.

При  $\tau = (T - T_c)/T_c \ll 1$ , где  $T_c - критическая температура, наблюдаются аномально боль$ шие и долгоживущие флуктуации некоторых термодинамических переменных, характеризуемые эффективно сильнымвзаимодействием между собой.



Корреляционная функция:

$$G(r-r') = \langle S(r)S(r')\rangle - \langle S(r)\rangle \langle S(r')\rangle \sim \frac{e^{-\frac{|r-r'|}{\xi(\tau)}}}{|r-r'|^{d-2+\eta}},$$
  
$$\xi(\tau) \sim |\tau|^{-\nu} \to \infty.$$

Автокорреляционная функция:

$$A(t-t') = \langle S(r,t)S(r,t')\rangle - \langle S(r,t)\rangle \langle S(r,t')\rangle \sim e^{-\frac{|t-t'|}{\tau_{corr}(\tau)}},$$
  
$$\tau_{corr}(\tau) \sim |\tau|^{-z\nu} \to \infty.$$

Параметр порядка (намагниченность *M* для ферромагнитных систем):

$$M(t) = \langle S(r,t) \rangle \sim e^{-\frac{t}{\tau_{rel}(\tau)}},$$
  
$$\tau_{rel}(\tau) \sim |\tau|^{-z\nu} \to \infty.$$



намагниченность M(T), восприимчивость  $\chi(T)$ , теплоемкость C(T),  $M(T) \sim (-\tau)^{\beta}$ ,  $\chi(T) \sim |\tau|^{-\gamma}$ ,  $C(T) \sim |\tau|^{-\alpha}$ ,

где  $\alpha$ ,  $\beta$ ,  $\gamma$  – критические индексы.

Компьютерное моделирование критических явлений дает возможность получения наглядной информации о росте флуктуаций намагниченности и критическом замедлении процессов релаксации в ферромагнитных системах по мере приближения к температуре фазового перехода, о проявлении аномальных свойств в поведении теплоемкости и магнитной восприимчивости.



Графики температурной зависимости восприимчивости  $\chi$  моделируемых двумерных систем с различными размерами L вблизи температуры фазового перехода



Графики температурной зависимости теплоемкости *С* моделируемых двумерных систем с различными размерами *L* вблизи температуры фазового перехода

# Модель Изинга

Макроскопические свойства системы определяются свойствами ее возможных микросостояний.

$$E = -J\sum_{i,j}^{N} S_i S_j - h\sum_{i}^{N} S_i s_j$$



где  $S_i$  – спины (в модели Изинга  $S = \pm 1$ ), первая сумма берется по всем ближайшим соседним парам спинов, а вторая - по всем спинам решетки. Константа обменного взаимодействия J является мерой силы взаимодействия между ближайшими соседними спинами.

# Канонический ансамбль

Канонический ансамбль - вероятность  $W_n$ , что система находится в микросостоянии, задаваемом набором квантовых чисел n, с энергией  $E_n$ 

$$W_n = \left(\frac{1}{Z}\right) \exp\left(-\frac{E_n}{kT}\right),$$

где  $Z = \sum_{n=1}^{N_0} \exp\left(-E_n / kT\right)$  – статистическая сумма,  $N_0$  – полное число микросостояний системы.

Средняя энергия

$$\langle E \rangle = \sum_{n} E_{n} W_{n} = \left(\frac{1}{Z}\right) \sum_{n} E_{n} \exp\left(-\frac{E_{n}}{kT}\right)$$

# Метод Монте-Карло

Среднее значение физической величины *A* по *m* сгенерированным из полного числа *N*<sub>0</sub> конфигураций

$$\langle A \rangle = \frac{1}{Z} \sum_{n=1}^{N_0} A_n \exp\left(-\frac{E_n}{kT}\right) \cong \frac{\sum_{n=1}^m A_n \exp\left(-\frac{E_n}{kT}\right)}{\sum_{n=1}^m \exp\left(-\frac{E_n}{kT}\right)}$$

Используя метод существенной выборки, генерируем конфигурации в соответствии с функцией  $P_n$ 

$$\langle A \rangle \cong \sum_{n=1}^{m} \frac{A_n}{P_n} \exp\left(-\frac{E_n}{kT}\right) / \sum_{n=1}^{m} \frac{1}{P_n} \exp\left(-\frac{E_n}{kT}\right).$$

# Алгоритм Метрополиса

*P<sub>n</sub>* может быть выбран в виде канонического распределения

$$P_n = \exp\left(-\frac{E_n}{kT}\right) / \sum_{n=1}^m \exp\left(-\frac{E_n}{kT}\right).$$

В этом случае, среднее физической величины  $\langle A \rangle$  превращается в среднее арифметическое

$$\langle A \rangle \cong \frac{1}{m} \sum_{n=1}^{m} A_n.$$

# Алгоритм Метрополиса

- 1. Формируем равновесную конфигурацию.
- Производим случайное пробное изменение в начальной конфигурации, т.е. случайным образом выбираем какой-нибудь спин и пробуем его опрокинуть.
- Вычисляем ∆E, т.е. изменение энергии системы, обусловленное произведенным пробным изменением конфигурации.
- 4. Если  $\Delta E \leq 0$ , то принимаем новую конфигурацию и переходим к шагу 8.
- 5. Если  $\Delta E > 0$ , то вычисляем вероятность перехода  $W = \exp(-\Delta E/kT).$

# Алгоритм Метрополиса

- 6. Генерируем случайное число r в интервале (0, 1).
- Если *r* ≤ *W*, то новую конфигурацию принимаем, в противном случае сохраняем предыдущую конфигурацию.
- 8. Определяем значения требуемых физических величин.
- 9. Повторяем шаги 2 8 для получения достаточного числа конфигураций.
- 10. Вычисляем средние по конфигурациям, которые статистически независимы.

# Критерий Харриса

Влияние точечных дефектов структуры на термодинамические характеристики определяется критическим показателем теплоемкости для однородных систем  $\alpha_0$ 

- $lpha_0 > 0$  беспорядок существенен, новый тип критического поведения

# Неупорядоченная модель Изинга

$$H = -J \sum_{\langle i,j \rangle} p_i p_j S_i S_j,$$

 $p_i$  - случайная переменная, описываемая функцией распределения

$$P(\boldsymbol{p_i}) = \boldsymbol{p}\delta(\boldsymbol{p_i} - 1) + (1 - \boldsymbol{p})\delta(\boldsymbol{p_i}),$$

$$p_{i} = \left\{ egin{array}{cccc} 1, & {
m y3ел} \ i \ {
m 3анят} \ {
m спином}, \\ 0, & {
m y3ел} \ {
m пуст}. \end{array} 
ight.$$

Концентрация спинов 
$$oldsymbol{p} = rac{1}{L^3}\sum_{i=1}^{L^3}oldsymbol{p}_{oldsymbol{i}}|S_i|$$



#### Температурная область влияния дефектов

$$rac{|T-T_c(p_s)|}{T_c(p_s)} \leq \left(rac{\Delta J}{J_0}
ight)^{1/arphi}$$

Критическое поведение структурно неупорядоченной системы с соответствующими "новыми"критическими индексами наблюдается в узкой температурной области вблизи критической температуры  $T_c$  с переходным этапом от критического поведения однородной системы к критическому поведению неупорядоченной систестемы.



Неравновесная критическая динамика неупорядоченных ферромагнетиков - р.16/27

$$M^{(k)}\left(t, au,L,m_{0}
ight)=b^{-keta/
u}M^{(k)}\left(b^{-z}t,\;b^{1/
u} au,\;b^{-1}L,\;b^{x_{0}}m_{0}
ight)$$

a) релаксация из упорядоченного состояния  $m_0=1$ 

$$M(t,\tau) = t^{-\beta/\nu z} M\left(1, t^{1/\nu z} \tau\right) \sim t^{-\beta/\nu z} \left(1 + a t^{1/\nu z} \tau + O\left(\tau^2\right)\right),$$

$$U_2 = \frac{\left[\left\langle M^2 \right\rangle\right]}{\left[\left\langle M \right\rangle\right]^2} - 1 = t^{d/z} U\left(1, t^{1/\nu z} \tau\right) \sim t^{d/z} \Big|_{\tau=0},$$

$$\frac{\partial}{\partial \tau} \ln M\left(t,\tau\right)|_{\tau=0} \sim t^{1/\nu z}$$

# Условия моделирования

- Система: кубическая решетка с L = 128
- Спиновая концентрация p = 0.95
  - Критическая температура  $T_c = 4.26267(4)$ ;
  - Усреднение по 6000 прим.конфигураций;
- Спиновая концентрация p = 0.8
  - Критическая температура  $T_c = 3.49948(18)$ ;
  - Усреднение по 50 000 прим.конфигураций;
- Спиновая концентрация p = 0.6
  - Критическая температура  $T_c = 2.42413(9)$ ;
  - Усреднение по 18000 прим.конфигураций;



Временные зависимости намагниченности для систем с p = 0.95 (а) и p = 0.80 (b) при температурах  $T_c$  (кривая 1) и  $T_c \pm \Delta T$  (кривые 3 и 2) в двойном логарифмическом масштабе.



Временные зависимости критического поведения ( $T = T_c$ ) кумулянта Биндера для систем с p = 0.95 (а) и p = 0.80 (b) в двойном логарифмическом масштабе



Временные зависимости критического поведения ( $T = T_c$ ) логарифмической производной намагниченности для систем с p = 0.95 (а) и p = 0.80 (b) в двойном логарифмическом масштабе

# Поправки к скейлингу

Учет поправок к асимптотической зависимости измеряемых величин за счет влияния конечности моделируемых систем.

$$X(t) \sim t^{\Delta} \left( 1 + A_x t^{-\omega/z} \right)$$

Для расчета значений критических показателей  $\Delta = -\beta/\nu z$ ,  $1/\nu z$ , d/z применен метод наименьших квадратов для осуществления наилучшей аппроксимации значений M(t), U(t) и  $\partial_{\tau} \ln M(t)$ ; показатель  $\omega/z$  определялся из условия минимальности значений относительных погрешностей  $S^2$  проведенных аппроксимаций.

# Поправки к скейлингу



Погрешность аппроксимации намагниченности при значении  $\omega/z = 0.181$  для систем с p = 0.95 (а) и при значении  $\omega/z = 0.265$  для систем с p = 0.80 (b)

# Критические индексы

| система                                              | z          | eta/ u    | u         | $oldsymbol{eta}$ | $\omega$  |
|------------------------------------------------------|------------|-----------|-----------|------------------|-----------|
| слабонеупорядоченная $p=0.95$                        | 2.185(17)  | 0.533(7)  | 0.668(22) | 0.356(11)        | 0.369(92) |
| слабонеупорядоченная $p=0.8$                         | 2.208(22)  | 0.490(6)  | 0.685(23) | 0.336(10)        | 0.397(97) |
| сильнонеупорядоченная $p=0.6$                        | 2.537(84)  | 0.644(84) |           |                  | 0.56(12)  |
| Ballesteros H.G., Phys.Rev.B,1998 $p = 0.9 \div 0.4$ |            |           | 0.684(5)  | 0.355(3)         | 0.370(63) |
| Calabrese P., Phys.Rev.E,2003 $p = 0.8$              |            |           | 0.683(3)  | 0.354(2)         |           |
| Прудников В.В. и др. ЖЭТФ,2007 $p = 0.95 \div 0.8$   |            |           | 0.693(5)  |                  | 0.26(13)  |
| $p = 0.6 \div 0.5$                                   |            |           | 0.731(11) |                  | 0.28(15)  |
| Прудников В.В. и др. ЖЭТФ,1993 $p=0.8$               | 2.20(8)    |           |           |                  |           |
| p = 0.6                                              | 2.58(9)    |           |           |                  |           |
| p = 0.4                                              | 2.65(12)   |           |           |                  |           |
| Wiseman S., Phys.Rev.E.,1998 $p = 0.6$               |            |           | 0.717(7)  | 0.313(12)        |           |
| Heuer H-O., J.Phys. A, 1993 $p = 0.6$                | 2.53(3)    |           | 0.72(2)   | 0.33(2)          |           |
| Pelissetto A., Phys.Rev.B,2000 (теор.пол.)           |            | 0.515(15) | 0.678(10) | 0.349(5)         | 0.25(10)  |
| Прудников В.В. и др., ТМФ,2006 (теор.пол.)           | 2.1792(13) |           |           |                  |           |
| Rosov N., Phys.Rev.B,1992 (эксп.) $p = 0.9$          | 2.18(10)   |           |           |                  |           |

b) эволюция из неупорядоченного состояния  $m_0 = 0.03; \ 0.02; \ 0.01; \ 0.0001$ 

$$M(t) \sim t^{\theta}, \qquad \theta = \left(\boldsymbol{x_0} - \frac{\beta}{\nu}\right) \frac{1}{z},$$
$$M^{(2)}(t) \sim t^{\boldsymbol{c_2}}, \qquad \boldsymbol{c_2} = \left(\boldsymbol{d} - 2\frac{\beta}{\nu}\right) \frac{1}{z},$$
$$A(t) = \frac{1}{N} \langle S_i(t) S_i(0) \rangle \sim t^{-\boldsymbol{c_a}}, \qquad \boldsymbol{c_a} = \frac{\boldsymbol{d}}{z} - \boldsymbol{\theta}$$

# Параметры моделирования

- Система: кубическая решетка с L = 128
- Спиновая концентрация p = 0.8
  - Критическая температура  $T_c = 3.49948(18)$ ;
  - Усреднение по 1000 прим.конфигураций;
  - Усреднение по 25 прогонкам для каждой примесной конфигурации;
- Спиновая концентрация p = 0.6
  - Критическая температура  $T_c = 2.42413(9)$ ;
  - Усреднение по 14000 прим.конфигураций;
  - Усреднение по 10 прогонкам для каждой примесной конфигурации;



Временные зависимости критического поведения намагниченности для систем с p = 0.80 (а) и p = 0.60 (b) при начальных значениях  $m_0 = 0.01$  (1); 0.02 (2); 0.03 (3) в двойном логарифмическом масштабе.





# Индексы 3D модели Изинга

| система                                                    | θ          | z          | eta/ u    | u        | $oldsymbol{eta}$ |
|------------------------------------------------------------|------------|------------|-----------|----------|------------------|
| однородная $t \in [10, 100]$                               | 0.106(4)   | 2.03(3)    | 0.520(9)  |          |                  |
| слабонеупор. $p=0.8~~m{t}\in[m{300,800}]$                  | 0.120(16)  | 2.185(10)  | 0.531(18) |          |                  |
| сильнонеупор. $p = 0.6$ $t \in [150, 700]$                 | 0.270(39)  | 2.504(37)  | 0.524(16) |          |                  |
| Ballesteros H.G., et. al. Phys. Rev. B, 1998               |            |            |           | 0.684(5) | 0.355(3)         |
| Calabrese P., et. al. Phys. Rev. E, 2003                   |            |            |           | 0.683(3) | 0.354(2)         |
| Прудников В.В. и др. ЖЭТФ, 1993                            |            | 2.20(8)    |           |          |                  |
| Schehr G., Paul R., 2005                                   | 0.10(2)    |            |           |          |                  |
| Прудников В.В. и др., ТМФ, 2006 (теор.пол.)                |            | 2.1792(13) |           |          |                  |
| Janssen H.K.,H.K. J.Phys.A,1995 (теор.пол. $\varepsilon$ ) | 0.087      |            |           |          |                  |
| Прудников В.В. и др., 2009 (теор.пол. $d=3$ )              | 0.264      |            |           |          |                  |
| Прудников В.В. и др., ЖЭТФ 2008 ( $arepsilon \; p=1$ )     | 0.1078(22) |            |           |          |                  |
| Rosov N., et.al., Phys. Rev. B, 1992 (эксп.)               |            | 2.18(10)   |           |          |                  |

# Вычислительные ресурсы:

- Межведомственный суперкомпьютерный центр РАН (Москва);
- Вычислительный кластер УГАТУ (Уфа);
- Вычислительный кластер ОмГУ (Омск);

