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LECTURE 10



LOCAL INVARIANT MANIFOLDS



The center manifold theorem

Consider an ODE
ẋ = Ax + O(|x |2), x ∈ Rn

with the right hand side of smoothness C r , r < ∞. Assume that the matrix A
has ns , nu and nc eigenvalues in the left complex half-plane, right complex
half-plane and on imaginary axis respectively, ns + nu + nc = n. Denote T s , T u

and T c the corresponding invariant planes of A . (Note: “s” is for “stable”,
“u” is for “unstable”, “c” is for “center ”).

Theorem (The center manifold theorem: Pliss-Kelley-Hirsch-Pugh-Shub)

In some neighborhood U of the origin this ODE has C r -smooth invariant
manifolds W s , W u and C r−1-smooth invariant manifold W c , which are
tangent at the origin to the planes T s , T u and T c respectively. Trajectories in
the manifolds W s and W u exponentially fast tend to the origin as t → +∞
and t → −∞ respectively. Trajectories which remain in U for all t ≥ 0 (t ≤ 0)
tend to W c as t → +∞ (t → −∞). W s , W u and W c are called the stable,
the unstable and a center manifolds of the equilibrium 0 respectively.

Remark
Behavior of trajectories on W c is determined by nonlinear terms.



The center manifold theorem, continued



The center manifold theorem, continued

Remark
If the original equation has smoothness C∞ or Cω, then W s and W u also have
smoothness C∞ or Cω. However W c in general has only a finite smoothness.

Remark
If ns = 0 or nu = 0 and the original equation has smoothness C r , r < ∞ , then
W c has smoothness C r .



The center manifold theorem, examples

Example (A center manifold need not be unique)

ẋ = x2, ẏ = −y



The center manifold theorem, examples

Example (A center manifold in general has only finite smoothness)

ẋ = xz − x3, ẏ = y + x4, ż = 0



Center manifold reduction

Consider an ODE
ẋ = Ax + O(|x |2), x ∈ Rn

with the right hand side of smoothness C 2. Assume that the matrix A has
ns , nu and nc eigenvalues in the left complex half-plane, right complex
half-plane and on imaginary axis respectively, ns + nu + nc = n.

Theorem ( Center manifold reduction: Pliss-Kelley-Hirsch-Pugh-Shub)

In a neighborhood of the coordinate origin this ODE is topologically equivalent
to the direct product of restriction of this equation to the center manifold and
the “standard saddle”:

κ̇ = w(κ), κ ∈ W c , ξ̇ = −ξ, ξ ∈ Rns , η̇ = η, η ∈ Rnu

The Tailor expansion for a center manifold can be computed by the method of
undetermined coefficients.



Center manifold reduction, continued

Consider an ODE
ẋ = Ax + O(|x |2), x ∈ Rn

with the right hand side of smoothness C r , r > 2. Assume that the matrix A is
block-diagonal with blocks B and C , where B is nc × nc -matrix with all
eigenvalues on imaginary axis and B is ns × ns -matrix with all eigenvalues in
the left complex half-plane, nc + ns = n.

Theorem ( Reduction near a center manifold)

In a neighborhood of the coordinate origin this ODE by a C r−1-smooth
transformation of variables x 7→ κ, ξ which is C 1-close to the identity near the
origin the system can be reduced to the form

κ̇ = Bκ + G(κ), κ ∈ Rnc ,

ξ̇ = (C + F (κ, ξ))ξ, ξ ∈ Rns ,

where G ∈ Cr , F ∈ C r−1, G(0) = 0, ∂G(0)/∂κ = 0, F (0, 0) = 0.

Remark
The surface {ξ = 0} is a center manifold.

The Tailor expansion for the transformation x 7→ κ, ξ can be computed by the
methods of normal forms theory.
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Center manifold reduction, continued
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Center manifold reduction for systems with parameters

Consider an ODE (actually, k-parametric family of ODE’s)

ẋ = v(x , α), v = A(α)x + O(|x |2), x ∈ Rn, α ∈ Rk

with the right hand side of smoothness C 2. Assume that the matrix A(0) has
ns , nu and nc eigenvalues in the left complex half-plane, right complex
half-plane and on imaginary axis respectively, ns + nu + nc = n.

Consider the extended system

ẋ = v(x , α), α̇ = 0

This system has in a neighborhood of the origin of the coordinates (x , α) a
center manifold of dimension nc + k.

Theorem ( Shoshitaishvili reduction principle)

In a neighborhood of the coordinates’ origin this ODE is topologically
equivalent to the direct product of restriction of this equation to the center
manifold and the “standard saddle”:

κ̇ = w(κ, α), κ ∈ Rnc , α̇ = 0, α ∈ Rk , ξ̇ = −ξ, ξ ∈ Rns , η̇ = η, η ∈ Rnu

The homeomorphism which realizes equivalence does not change α.



Some definitions in bifurcation theory

The phase portrait of a dynamical system is a partitioning of the state space
into orbits.

Consider a dynamical system that depends on parameters (actually, family of
dynamical systems).

The appearance of a topologically nonequivalent phase portraits under variation
of parameters is called a bifurcation.

A bifurcation diagram of the dynamical system is a stratification of its
parameter space induced by the topological equivalence, together with
representative phase portraits for each stratum.

A bifurcation boundary is a surface in the parameter space on which a
bifurcation occurs.

If family of dynamical systems is generic, then the codimension of a bifurcation
is the difference between the dimension of the parameter space and the
dimension of the corresponding bifurcation boundary. The codimension of
the bifurcation of a given type is the minimal number of parameters of families
in which that bifurcation type occurs. Equivalently, the codimension is the
number of equality conditions that characterize a bifurcation.
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Example: Saddle-node bifurcation

Example (Saddle-node bifurcation; also called fold, tangent, limit point,
turning point bifurcation)

The saddle-node bifurcation is a local bifurcation which takes place in generic
ODEs when at some value of a parameter there is an equilibrium with the
eigenvalue 0. In this case as the parameter changes two equilibria collide and
disappear.

Consider a one-parametric family of ODEs

ẋ = ax2 + α + O(|x |3 + |αx |+ α2 + y 2 + . . .), ẏ = −y + O(y 2 + |α|+ x2 + . . .)

Here x ∈ R1, y ∈ R1, α ∈ R1, a = const 6= 0. The extended system is

ẋ = ax2 + α + O(. . .), ẏ = −y + O(. . .), α̇ = 0

On the local center manifold for the extended system y = O(|α|+ x2). The
reduced family is

ẋ = ax2 + α + O(|x |3 + |αx |+ α2), α̇ = 0

The truncated system is

ż = az2 + α, α̇ = 0
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ẋ = ax2 + α + O(. . .), ẏ = −y + O(. . .), α̇ = 0
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ẋ = ax2 + α + O(. . .), ẏ = −y + O(. . .), α̇ = 0

On the local center manifold for the extended system y = O(|α|+ x2). The
reduced family is
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Example: Saddle-node bifurcation, continued

The phase portrait of the truncated system for a > 0 looks like this:

In the reduced on the central manifold family as the parameter α groves and
passes trough 0 two equilibria, stable and unstable ones, collide and disappear.
One can drove �the bifurcation diagram for this codimension 1 bifurcation:

Such bifurcation diagram for reduced on a central manifold family typically
appears for bifurcation at which one eigenvalue vanishes and all other
eigenvalues have non-zero real parts.
For the the original system the bifurcation diagram looks as follows:
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Example: Saddle-node bifurcation, continued

Analogous bifurcation, also called the saddle-node bifurcation, takes place in
generic ODEs when at some value of a parameter there is a periodic trajectory
with the multiplier 1 (and in generic maps when at some value of a parameter
there is a fixed point with the multiplier 1). As parameter changes two periodic
trajectory (respectively, two fixed points) collide and disappear. The bifurcation
diagram looks as follows (for periodic trajectories this is a picture on Poincaré
section):



Example: Saddle-node bifurcation, continued

The bifurcation diagram for a planar system looks as follows:



Example of non-local bifurcation: The bifurcation of a limit cycle from the
homoclinic loop of the saddle-node

Consider an ODE
ẋ = v(x , α), x ∈ Rn, α ∈ Rk

Let for α = 0 this equation have a fixed point with all eigenvalues in the left
half-plane but one equal to 0 (a saddle-node).

Assume that for α = 0 there is a homoclinic trajectory to this saddle-node.
Under some generality assumptions the bifurcation diagram looks as follows
(Andronov-Vitt-Leontovich-Shilnikov):

This is a codimension 1 bifurcation.
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The bifurcation of a limit cycle from the homoclinic loop of the
saddle-node, continued

The metamorphose of a phase portrait in 2D with such bifurcation may look
like this (example from A.A.Andronov, A.A. Vitt, S.E. Khajkin, Theory of
Oscillations, 1966):



NORMAL FORMS



Preliminary transformation: shift of the origin

Consider an ODE depending on parameters (actually, a family of ODEs)

ẋ = v(x , α), x ∈ D ⊂ Rn, α ∈ U ⊂ Rk , v ∈ C 2(D × U)

Let for α = α0 this ODE has an equilibrium x = x0. Therefore,

ẋ =
∂v(x0, α0)

∂x
(x − x0) + O(|x − x0|2 + |α− α0|)

Assume that the equilibrium is non-degenerate, i.e. matrix A0 = ∂v(x0,α0)
∂x

is
non-degenerate (does not have the eigenvalue 0). Then by the implicit function
theorem for each value of α close enough to α0 the equation has the
equilibrium x = X (α) such that X (α0) = x0. Introduce x̃ = x − X (α). We get
the ODE whose equilibrium is x̃ = 0 for all values of α under consideration.

In the following we will assume that there is no eigenvalue 0. So, without loss
of generality we may assume that the equilibrium is at the coordinate origin.

Recall that if there is the eigenvalue 0, then typically there is saddle-node
bifurcation of equilibria.
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Preliminary transformation: shift of the origin, continued

Consider a map depending on parameters (actually, a family of maps)

x 7→ P(x , α), x ∈ D ⊂ Rn, α ∈ U ⊂ Rk , P ∈ C 2(D × U)

Let for α = α0 this map has a fixed point x = x0. Therefore,

x 7→ x0 +
∂P(x0, α0)

∂x
(x − x0) + O(|x − x0|2 + |α− α0|)

Assume that the fixed point is non-degenerate, i.e. it does not have the
multiplier 1 (i.e. matrix A0 = ∂P(x0,α0)

∂x
does not have the eigenvalue 1). Then

by the implicit function theorem for each value of α close enough to α0 the
map has the fixed point x = X (α) such that X (α0) = x0. Introduce
x̃ = x − X (α). We get the map whose fixed point is x̃ = 0 for all values of α
under consideration.

In the following we will assume that there is no multiplier 1. So, without loss of
generality we may assume that the fixed point is at the coordinate origin.

Recall that if there is the multiplier 1, then typically there is saddle-node
bifurcation of fixed points.
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Assume that the fixed point is non-degenerate, i.e. it does not have the
multiplier 1 (i.e. matrix A0 = ∂P(x0,α0)

∂x
does not have the eigenvalue 1). Then

by the implicit function theorem for each value of α close enough to α0 the
map has the fixed point x = X (α) such that X (α0) = x0. Introduce
x̃ = x − X (α). We get the map whose fixed point is x̃ = 0 for all values of α
under consideration.

In the following we will assume that there is no multiplier 1. So, without loss of
generality we may assume that the fixed point is at the coordinate origin.

Recall that if there is the multiplier 1, then typically there is saddle-node
bifurcation of fixed points.
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Preliminary transformation: shift of the origin, continued

Consider an ODE depending on parameters (actually, a family of ODEs)

ẋ = v(x , α), x ∈ D ⊂ Rn, α ∈ U ⊂ Rk , v ∈ C 2(D × U)

Let for α = α0 this ODE has a periodic trajectory.

In the normal coordinates near this trajectory the equation has the form

dy

dθ
= w(y , θ, α), w(0, θ, α0) ≡ 0, y ∈ Rn−1, θ ∈ S1

The monodromy map for the section {θ = 0} has for α = α0 the fixed point at
y = 0. Assume that the periodic trajectory is non-degenerate, i.e. the fixed
point does not have multiplier 1. Then for each value of α close enough to α0

the map has the fixed point y = y∗(α) such that y∗(α0) = 0. The equation has
periodic solution Y (θ, α), θ ∈ S1 with the initial condition Y (0, α) = y∗(α).
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Preliminary transformation: shift of the origin, continued

Introduce ỹ = y − Y (θ, α). We get the time-periodic ODE which has
equilibrium ỹ = 0 for all values of α under consideration.

In the following we will assume that there is no multiplier 1. So, without loss of
generality we may assume that the system in normal coordinates has
equilibrium at the coordinate origin.

If all multipliers are different, then according to Floquet-Lyapunov theory
without loss of generality we may assume that the linearised near the
equilibrium system has constant coefficients.
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LECTURE 11



NORMAL FORMS



Resonances near equilibria

Consider an ODE
ẋ = Ax + O(|x |2), x ∈ Rn

where A is a linear operator. Assume that right hand side of this ODE is
analytic in some neighborhood of 0.
Denote λ1, λ2, . . . , λn the eigenvalues of A.

Definition
The set of eigenvalues of the operator A is called a resonant one if a relation
of the form

λs = m1λ1 + m2λ2 + . . . + mnλn,

with integer non-negative m1, m2, . . . , mn such that
nP

j=1

mj ≥ 2 is satisfied. This

relation is called a resonance relation or just a resonance. The value

|m| =
nP

j=1

mj is called an order of the resonance.

Denote (m, λ)
def
= m1λ1 + m2λ2 + . . . + mnλn.

Example

λ1 = λ2 + λ3 is the resonance of order 2. 2λ1 = 3λ2 is not a resonance.
If λ1 = −λ2 then there is infinite number of resonances λs = λs + k(λ1 + λ2),
k = 1, 2, 3, . . ..
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Reduction to a linear system, the Poincaré theorem

Theorem (H. Poincaré)

If eigenvalues of an equilibrium do not satisfy resonance relations up to an
order N inclusively, then by a polynomial real close to the identical
transformation of variables

x = y + O(|y |2)

the system is reducible to the form

ẏ = Ay + O(|y |N+1)

Corollary

If there are no resonances of any order, then a formal transformation of
variables reduces original nonlinear system to the linear one.

If all eigenvalues are situated in one complex half-plane, either in the left or in
the right one, then the formal series for the transformation of variables
converges in some neighborhood of 0. So, by an analytic transformation of
variables the system is reducible to the linear one (H. Poincaré).
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Proof of the Poincaré theorem

The system under consideration has the form

ẋ = Ax + V (x), V (x) = v2(x) + v3(x) + . . . + vN(x) + O(|x |N+1)

where vr (x) is the homogeneous vector polynomial of x of degree r .

We are looking for a transformation of variables x 7→ y of the form

x = y + h(y), h(y) = h2(y) + h3(y) + . . . + hN(y)

where hr (y) is a homogeneous vector polynomial of y of degree r . We have

ẏ +
∂h

∂y
ẏ = A(y + h(y)) + V (y + h(y)) + O(|y |N+1)

Assume that the transformation reduces the system to the required form.
Equating terms of order r we get a homological equation (called also a
co-homological equation)

∂hr

∂y
Ay − Ahr (y) = Vr (y)

where Vr is the homogeneous vector polynomial of degree r whose coefficients
are expressed through coefficients of v2, . . . , vr , h2, . . . , hr−1.

Lemma
In absence of resonances of order r for any Vr the homological equation has a
unique solution hr .

Induction in r completes the proof.
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Proof of the Lemma about homological equation

To simplify the reasoning assume that eigenvalues of A are all different (the
result is valid in the general case). The homological equation has the form

∂h(y)

∂y
Ay − Ah(y) = U(y)

(Note that (∂h/∂y)Ay − Ah is the commutator of the vector fields Ay and h.)
Here U(y), h(y) are the homogeneous vector polynomials of y of degree r .
Let e1, e2, . . . , en be eigenvectors of the complexified operator A, that
correspond to the eigenvalues λ1, λ2, . . . , λn. The eigenvectors form a basis in
Cn. Let y1, y2, . . . , yn be coordinates of y in this basis. Then

U =
X

s=1,...,n; |m|=r

Us,mymes , h =
X

s=1,...,n; |m|=r

hs,mymes

Here
m = (m1, . . . , mn) ∈ Zn, mi ≥ 0, |m| def

= m1 + . . . + mn, ym def
= ym1

1 ym2
2 . . . ymn

n .
Equating in the homological equation the coefficients in front of ymes , we get

(m1λ1 + m2λ2 + . . . + mnλn − λs)hs,m = Us,m

Thus, hs,m = Us,m/((m, λ)− λs). If y is real, then h(y) is real. This completes
the proof.



Resonant monomials, resonant normal form near equilibria

For simplicity of formulations assume that eigenvalues λ1, λ2, . . . , λn of the
operator A are all different. So, the the eigenvectors e1, e2, . . . , en of the
complexified operator A form a basis in Cn.

Let some system S of resonance relations be given. We will assume that S
contains all resonance relations which can be derived from any subsystem of S.

Definition
A vector monomial xmes is called a resonant one for resonances in S if the
resonance relation λs = (m, λ) is presented in the system S.

Example

If S includes relation λ1 = λ2 + λ3, then the vector monomial x2x3e1 is a
resonant one. If S includes relation λ1 = 2λ1 + λ2, then all vector monomials
(x1x2)

kxses are resonant ones.

Definition
A system

ẋ = Ax + . . .

is said to be in the resonant normal form for resonances from S if the nonlinear
part of its right hand side is a sum of resonant vector monomials.
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Reduction to resonant normal form, the Poincaré-Dulac theorem

Theorem (H. Poincaré-H.Dulac)

If eigenvalues of an equilibrium do not satisfy resonance relations up to an
order N inclusively except, may be, resonances from S, then by a polynomial
real close to the identical transformation of variables

x = y + O(|y |2)

the system is reducible to the form

ẏ = Ay + w(y) + O(|y |N+1)

were w is a sum of resonant vector monomials of degrees not exceeding N.

Thus, the system without the term O(|y |N+1) (also called a truncated system )
is in a resonant normal form.

Corollary

If there are no resonances of any order, except, may be, resonances from S,
then a formal transformation of variables reduces original system to a system
in a formal resonant normal form.

Example

If n = 2 and the only possible resonance is λ1 = 2λ2, then the system in formal
normal form is ẋ1 = λ1x1 + cx2

2 , ẋ2 = λ2x2, c=const.
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ẏ = Ay + w(y) + O(|y |N+1)

were w is a sum of resonant vector monomials of degrees not exceeding N.

Thus, the system without the term O(|y |N+1) (also called a truncated system )
is in a resonant normal form.

Corollary

If there are no resonances of any order, except, may be, resonances from S,
then a formal transformation of variables reduces original system to a system
in a formal resonant normal form.

Example

If n = 2 and the only possible resonance is λ1 = 2λ2, then the system in formal
normal form is ẋ1 = λ1x1 + cx2
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Proof of the Poincaré-Dulac theorem

The system under consideration has the form
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x = y + h(y), h(y) = h2(y) + h3(y) + . . . + hN(y)

which reduces the system to the form

ẏ = Ay + w(y) + O(|y |N+1), w(y) = w2(y) + w3(y) + . . . + wN(y)

where hr (y), wr (y) are homogeneous vector polynomials of y of degree r , and
wr (y) contains only resonant monomials. We have

ẏ +
∂h

∂y
ẏ = A(y + h(y)) + V (y + h(y)) + O(|y |N+1)

Assume that the transformation reduces the system to the required form.
Equating terms of order r we get a homological equation

∂hr

∂y
Ay − Ahr (y) = Vr (y)− wr (y)

where Vr is the homogeneous vector polynomial of degree r whose coefficients
are expressed through coefficients of v2, . . . , vr , h2, . . . , hr−1, w2, . . . , wr−1.

Take as wr (y) the sum of resonant monomials in Vr (y).
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ẏ +
∂h

∂y
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Proof of the Poincaré-Dulac theorem, continued

Lemma
For this choice of wr the homological equation has a solution hr in the form of
the sum of non-resonant monomials. The solution in such form is a unique.

Induction in r completes the proof of the theorem.

Proof of the Lemma about the homological equation.

The solution is constructed by the method of undetermined coefficients exactly
as in the proof of the Poincaré theorem. Denominators in the formulas do not
vanish because the right hand side of the homological equation does not
contain resonant monomials.
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Exercises

Exercises

1. Check that the vector field (∂h/∂y)Ay − Ah is the commutator of the
vector fields Ay and h

2. The operator (∂(·)/∂y)Ay − A(·) is a linear operator in the space of
homogeneous vector polynomials of any given degree. Find eigenvalues of this
operator.

3. Find formal normal form for a system of 3 equations in the case of the
resonance λ1 = λ2 + λ3.

4.Prove that the phase flow of any system in normal form for resonances in S
commutes with the phase flow of its linear part provided that all resonance
relation from S are indeed satisfied.



LECTURE 12



NORMAL FORMS



Resonances near equilibria

Consider an ODE
ẋ = Ax + O(|x |2), x ∈ Rn

where A is a linear operator. Assume that right hand side of this ODE is
analytic in some neighborhood of 0.
Denote λ1, λ2, . . . , λn the eigenvalues of A.

Definition
The set of eigenvalues of the operator A is called a resonant one if a relation
of the form

λs = m1λ1 + m2λ2 + . . . + mnλn,

with integer non-negative m1, m2, . . . , mn such that
nP

j=1

mj ≥ 2 is satisfied. This

relation is called a resonance relation or just a resonance. The value

|m| =
nP

j=1

mj is called an order of the resonance.

Denote (m, λ)
def
= m1λ1 + m2λ2 + . . . + mnλn.

Example

λ1 = λ2 + λ3 is the resonance of order 2. 2λ1 = 3λ2 is not a resonance.
If λ1 = −λ2 then there is infinite number of resonances λs = λs + k(λ1 + λ2),
k = 1, 2, 3, . . ..



Resonant monomials, resonant normal form near equilibria

For simplicity of formulations assume that eigenvalues λ1, λ2, . . . , λn of the
operator A are all different. So, the the eigenvectors e1, e2, . . . , en of the
complexified operator A form a basis in Cn.

Let some system S of resonance relations be given. We will assume that S
contains all resonance relations which can be derived from any subsystem of S.

Definition
A vector monomial xmes is called a resonant one for resonances in S if the
resonance relation λs = (m, λ) is presented in the system S.

Example

If S includes relation λ1 = λ2 + λ3, then the vector monomial x2x3e1 is a
resonant one. If S includes relation λ1 = 2λ1 + λ2, then all vector monomials
(x1x2)

kxses are resonant ones.

Definition
A system

ẋ = Ax + . . .

is said to be in the resonant normal form for resonances from S if the nonlinear
part of its right hand side is a sum of resonant vector monomials.



Reduction to resonant normal form, the Poincaré-Dulac theorem

Theorem (H. Poincaré-H.Dulac)

If eigenvalues of an equilibrium do not satisfy resonance relations up to an
order N inclusively except, may be, resonances from S, then by a polynomial
real close to the identical transformation of variables

x = y + O(|y |2)

the system is reducible to the form

ẏ = Ay + w(y) + O(|y |N+1)

were w is a sum of resonant vector monomials of degrees not exceeding N.

Thus, the system without the term O(|y |N+1) (also called a truncated system )
is in a resonant normal form.

Corollary

If there are no resonances of any order, except, may be, resonances from S,
then a formal transformation of variables reduces original system to a system
in a formal resonant normal form.

Example

If n = 2 and the only possible resonance is λ1 = 2λ2, then the system in formal
normal form is ẋ1 = λ1x1 + cx2

2 , ẋ2 = λ2x2, c=const.



Example: normal form for Poincaré-Andronov-Hopf bifurcation

The Poincaré-Andronov-Hopf bifurcation is a local bifurcation which takes
place in generic ODEs when an equilibrium loses stability as a pair of complex
conjugate eigenvalues cross the imaginary axis of the complex plane.

Assume that λ1,2 = δ ± iω, where δ is small and ω 6= 0. Assume that all other
eigenvalues have negative real parts. Assume that possible resonances up to
certain order N are only ones created by the relation λ1 + λ2 = 0.
According to Poincaré-Dulac’s theorem the system can be transformed to form

ż1 = λ1z1 + (c0(z1z2) + c1(z1z2)
2 + . . . + cN−2(z1z2)

(N−1)/2)z1 + O(|z |N+1)

ż2 = λ2z2 + (c̄0(z1z2) + c̄1(z1z2)
2 + . . . + c̄N−2(z1z2)

(N−1)/2)z2 + Ō(|z |N+1)

żj = λjzj + (dj,0(z1z2) + dj,1(z1z2)
2 + . . . + dj,N−2(z1z2)

(N−1)/2)zj + O(|z |N+1)

j = 3, 4, . . . , n

The center manifold is approximated by the plane of variables z1, z2. For
real initial data z2 = z̄1 along solutions. Denote z = z1, λ = λ1. Truncated at
the terms of the 3rd order equation for z is

ż = (λ + c0|z |2)z

Introduce polar coordinates r , ϕ : z = re iϕ. We get equations:

ṙ = (δ + ar 2)r , ϕ̇ = ω + br 2, were a = Re c0, b = Im c0
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The Poincaré-Andronov-Hopf bifurcation is a local bifurcation which takes
place in generic ODEs when an equilibrium loses stability as a pair of complex
conjugate eigenvalues cross the imaginary axis of the complex plane.

Assume that λ1,2 = δ ± iω, where δ is small and ω 6= 0. Assume that all other
eigenvalues have negative real parts.

Assume that possible resonances up to
certain order N are only ones created by the relation λ1 + λ2 = 0.
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ż2 = λ2z2 + (c̄0(z1z2) + c̄1(z1z2)
2 + . . . + c̄N−2(z1z2)

(N−1)/2)z2 + Ō(|z |N+1)
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The Poincaré-Andronov-Hopf bifurcation is a local bifurcation which takes
place in generic ODEs when an equilibrium loses stability as a pair of complex
conjugate eigenvalues cross the imaginary axis of the complex plane.

Assume that λ1,2 = δ ± iω, where δ is small and ω 6= 0. Assume that all other
eigenvalues have negative real parts. Assume that possible resonances up to
certain order N are only ones created by the relation λ1 + λ2 = 0.
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żj = λjzj + (dj,0(z1z2) + dj,1(z1z2)
2 + . . . + dj,N−2(z1z2)

(N−1)/2)zj + O(|z |N+1)

j = 3, 4, . . . , n

The center manifold is approximated by the plane of variables z1, z2. For
real initial data z2 = z̄1 along solutions. Denote z = z1, λ = λ1. Truncated at
the terms of the 3rd order equation for z is
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According to Poincaré-Dulac’s theorem the system can be transformed to form
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Example: normal form for Poincaré-Andronov-Hopf bifurcation, continued

The bifurcation diagram for the case a < 0 (so called supercritical, or soft, or
non-catastrophic bifurcation) looks as follows (image by Yuri Kuznetsov at
Scholarpedia, β ≡ δ = Re λ):

The bifurcation diagram for the case a > 0 (so called subcritical, or sharp, or
catastrophic bifurcation) looks as follows (image by Yuri Kuznetsov at
Scholarpedia, β ≡ δ = Re λ):
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Example: normal form for Poincaré-Andronov-Hopf bifurcation, continued

The phase portraits for the extended system (we add equation δ̇ = 0) looks as
follows



Exercises

Exercises

1. Consider the system

ẋ = −y + δx + αxy , ẏ = x + δy + βxy + γx2

The parameter δ grows and passing through the value δ = 0. For which values
of parameters α, β, γ the stability loss of the equilibrium x = y = 0 will be a
“soft” one?



Resonances near periodic trajectory

Consider an ODE

ẋ = Ax + V (x , t), V (x , t + 2π) = V (x , t), V = O(|x |2), x ∈ Rn

where A is a linear operator. Assume that function V is analytic in some
neighborhood of {0} × S1.
We use previous notation: λj , j = 1, 2, . . . , n are eigenvalues of A,
λ = (λ1, λ2, . . . , λn) , m = (m1, m2, . . . , mn), |m| = |m1|+ |m2|+ . . . + |mn|,
(m, λ) = m1λ1 + m2λ2 + . . . + mnλn.

Definition
The set of eigenvalues of the operator A is called a resonant one if a relation
of the form

λs = (m, λ) + ik,

is satisfied, where components of m are integer non-negative, |m| ≥ 2, k is
integer. This relation is called a resonance relation or just a resonance. The
value |m| is called an order of the resonance.

Note that number of resonances of given order |m| is finite.



Resonant monomials, resonant normal form near periodic trajectory

Assume that eigenvalues λ1, λ2, . . . , λn of the operator A are all different. So,
the the eigenvectors e1, e2, . . . , en of the complexified operator A form a basis
in Cn.

Let some system S of resonance relations be given. We will assume that S
contains all resonance relations which can be derived from any subsystem of S.

Definition
A vector monomial e iktxmes is called a resonant one for resonances in S if the
resonance relation λs = (m, λ) + ik is presented in the system S.

Definition
A system

ẋ = Ax + . . .

is said to be in the resonant normal form for resonances from S if the nonlinear
part of its right hand side is a sum of resonant vector monomials.
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Reduction to resonant normal form near periodic trajectory

Theorem
If eigenvalues of an equilibrium of time-periodic system do not satisfy
resonance relations up to an order N inclusively except, may be, resonances
from S, then by a polynomial in space coordinates and periodic in time real
close to the identical transformation of variables

x = y + O(|y |2)

the system is reducible to the form

ẏ = Ay + w(y , t) + O(|y |N+1)

were w is a sum of resonant vector monomials of degrees not exceeding N.

Thus, the system without the term O(|y |N+1) (also called a truncated system )
is in a resonant normal form.

Corollary

If there are no resonances of any order, except, may be, resonances from S,
then a formal transformation of variables reduces the original system to a
system in a formal resonant normal form.
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Reduction to resonant normal form near periodic trajectory, continued

Procedure of reduction to resonant normal form near a periodic trajectory is
analogous to that near an equilibrium
The system under consideration has the form

ẋ = Ax + V (x , t), V (x , t) = v2(x , t) + v3(x , t) + . . . + vN(x , t) + O(|x |N+1)

where vr (x , t) is the homogeneous vector polynomial of x of degree r .

We are looking for a transformation of variables x , t 7→ y , t of the form

x = y + h(y , t), h(y , t) = h2(y , t) + h3(y , t) + . . . + hN(y , t)

which reduces the system to the form

ẏ = Ay + w(y , t) + O(|y |N+1), w(y , t) = w2(y , t) + w3(y , t) + . . . + wN(y , t)

where hr (y , t), wr (y , t) are homogeneous vector polynomials of y of degree r ,
and wr (y , t) contains only resonant monomials. Plugging the transformation
of variables into original differential equation, assuming that the transformed
equation has required form and equating terms of order r we get a homological
equation

∂hr

∂t
+

∂hr

∂y
Ay − Ahr (y , t) = Vr (y , t)− wr (y , t)

where Vr is the homogeneous vector polynomial of degree r whose coefficients
are expressed through coefficients of v2, . . . , vr , h2, . . . , hr−1, w2, . . . , wr−1.

Take as wr (y , t) the sum of resonant monomials in Vr (y , t).
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ẋ = Ax + V (x , t), V (x , t) = v2(x , t) + v3(x , t) + . . . + vN(x , t) + O(|x |N+1)

where vr (x , t) is the homogeneous vector polynomial of x of degree r .
We are looking for a transformation of variables x , t 7→ y , t of the form

x = y + h(y , t), h(y , t) = h2(y , t) + h3(y , t) + . . . + hN(y , t)

which reduces the system to the form
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Reduction to resonant normal form near periodic trajectory, continued

Lemma
For this choice of wr the homological equation has a solution hr in the form of
a sum of non-resonant monomials. The solution in such form is a unique.

Proof.
Let e1, e2, . . . , en be eigenvectors of the complexified operator A, that
correspond to the eigenvalues λ1, λ2, . . . , λn. The eigenvalues of A are all
different, and so the eigenvectors form a basis in Cn. Let y1, y2, . . . , yn be
coordinates of y in this basis. Denote Ur (y , t) = Vr (y , t)− wr (y , t). Then

Ur =
X

k∈Z; s=1,...,n; |m|=r

Uk,s,me iktymes , h =
X

k∈Z; s=1,...,n; |m|=r

hk,s,me iktymes

Equating in the homological equation the coefficients in front of e ikymes , we get

(ik + m1λ1 + m2λ2 + . . . + mnλn − λs)hs,m = Us,m

Thus, hk,s,m = Uk,s,m/(ik + (m, λ)− λs). If y is real, then h(y) is real. This
completes the proof.



Example: normal form for Neimark-Sacker bifurcation

The Neimark-Sacker bifurcation is a local bifurcation which takes place in
generic ODEs when a periodic trajectory loses stability as a pair of complex
conjugate multipliers cross the unit circle in the complex plane not close to
points 1, −1, e±i2π/3, e±iπ/2 .

Consider the case n = 2. General case reduces to this one by means of
Shoshitaisvili reducton principle. Assume that λ1,2 = δ ± iω, where δ is small
and ω 6= 0. The resonance relation

λ1 = m1λ1 + m2λ2 + ik
for λ1,2 = ±iω reduces to

ω(m1 −m2 − 1) + k = 0
The correspoding multiplier is ρ = e2πiω.
Enumerate possible resonances of the 2nd and 3rd order:
m1 = 2, m2 = 0, ω = −k, ρ = 1
m1 = 1, m2 = 1, ω = k, ρ = 1

m1 = 0, m2 = 2, 3ω = k, ρ = e
2πi
3

k

m1 = 3, m2 = 0, 2ω = −k, ρ = e−πik = ±1
m1 = 2, m2 = 1, 0 = −k, any ρ = e2πiω

m1 = 1, m2 = 2, 2ω = k, ρ = eπik = ±1

m1 = 0, m2 = 3, 4ω = k, ρ = e
πi
2

k

Our assumptions about multipliers exclude all cases but m1 = 2, m2 = 1.
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Example: normal form for Neimark-Sacker bifurcation, continued

So, the only possible resonance relation with |m| ≤ 3 is λ1 = 2λ1 + λ2, or
λ1 + λ2 = 0 like for Poincaré-Andronov-Hopf bifurcation.

The system can be transformed to the form

ż1 = λ1z1 + c0(z1z2)z1 + O(|z |4), ż2 = λ2z2 + c̄0(z1z2)z2 + Ō(|z |4)
For real initial data along solutions z2 = z̄1. Denote z = z1, λ = λ1. Truncated
at the terms of the 3rd order equation for z is

ż = (λ + c0|z |2)z
Introduce polar coordinates r , ϕ : z = re iϕ. We get equations:

ṙ = (δ + ar 2)r , ϕ̇ = ω + br 2, were a = Re c, b = Im c

The bifurcation diagram for truncated equation is exactly the same as for the
Poincaré-Andronov-Hopf bifurcation. The bifurcation for a < 0 is called
supercritical, or soft, or non-catastrophic bifurcation), while for a > 0 it is
called subcritical, or sharp, or catastrophic bifurcation.

In the original system a two-dimensional invariant torus branches off the
periodic solution either at δ > 0 ( supercritical case) or at δ < 0 ( subcritical
case).
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λ1 + λ2 = 0 like for Poincaré-Andronov-Hopf bifurcation.
The system can be transformed to the form
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Example: normal form for Neimark-Sacker bifurcation, continued

The bifurcation diagrams look like this: Supercritical case:

Subcritical case:
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Example: normal form for Neimark-Sacker bifurcation, continued

There is nevertheless essential difference in behavior of trajectories in exact and
truncated system. The Poincaré section for exact system may look like this.

In the original system as a parameter changes on the invariant torus appear an
disappear isolated periodic trajectories.

Invariant torus in general has only finite smoothness.
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On stability loss of periodic trajectory near the resonance

What happens if a pair of complex-conjugated multipliers ρ, ρ̄ cross the unit

circle near the points e±
2πi
3 ?

This is described by the following bifurcation diagram (“clock-face”), and the
similar diagram with the reverse of all arrows, V.I.Arnold, Geometrical methods
in the theory of ordinary differential equations”, ε = ln ρ− 2πi

3
.

A two-parametric bifurcation diagram is needed here.
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LECTURE 13



NORMAL FORMS



Resonances near periodic trajectory

Consider an ODE

ẋ = Ax + V (x , t), V (x , t + 2π) = V (x , t), V = O(|x |2), x ∈ Rn

where A is a linear operator. Assume that function V is analytic in some
neighborhood of {0} × S1.
We use previous notation: λj , j = 1, 2, . . . , n are eigenvalues of A,
λ = (λ1, λ2, . . . , λn) , m = (m1, m2, . . . , mn), |m| = |m1|+ |m2|+ . . . + |mn|,
(m, λ) = m1λ1 + m2λ2 + . . . + mnλn.

Definition
The set of eigenvalues of the operator A is called a resonant one if a relation
of the form

λs = (m, λ) + ik,

is satisfied, where components of m are integer non-negative, |m| ≥ 2, k is
integer. This relation is called a resonance relation or just a resonance. The
value |m| is called an order of the resonance.

Note that number of resonances of given order |m| is finite.



Resonant monomials, resonant normal form near periodic trajectory

Assume that eigenvalues λ1, λ2, . . . , λn of the operator A are all different. So,
the the eigenvectors e1, e2, . . . , en of the complexified operator A form a basis
in Cn.

Let some system S of resonance relations be given. We will assume that S
contains all resonance relations which can be derived from any subsystem of S.

Definition
A vector monomial e iktxmes is called a resonant one for resonances in S if the
resonance relation λs = (m, λ) + ik is presented in the system S.

Definition
A system

ẋ = Ax + . . .

is said to be in the resonant normal form for resonances from S if the nonlinear
part of its right hand side is a sum of resonant vector monomials.



Reduction to resonant normal form near periodic trajectory

Theorem
If eigenvalues of an equilibrium of time-periodic system do not satisfy
resonance relations up to an order N inclusively except, may be, resonances
from S, then by a polynomial in space coordinates and periodic in time real
close to the identical transformation of variables

x = y + O(|y |2)

the system is reducible to the form

ẏ = Ay + w(y , t) + O(|y |N+1)

were w is a sum of resonant vector monomials of degrees not exceeding N.

Thus, the system without the term O(|y |N+1) (also called a truncated system )
is in a resonant normal form.

Corollary

If there are no resonances of any order, except, may be, resonances from S,
then a formal transformation of variables reduces the original system to a
system in a formal resonant normal form.



Example: normal form for Neimark-Sacker bifurcation

The Neimark-Sacker bifurcation is a local bifurcation which takes place in
generic ODEs when a periodic trajectory loses stability as a pair of complex
conjugate multipliers cross the unit circle in the complex plane not close to
points 1, −1, e±i2π/3, e±iπ/2 .

Consider the case n = 2. General case reduces to this one by means of
Shoshitaisvili reducton principle. Assume that λ1,2 = δ ± iω, where δ is small
and ω 6= 0.
The only possible resonance relation with |m| ≤ 3 is λ1 = 2λ1 + λ2, or
λ1 + λ2 = 0 like for Poincaré-Andronov-Hopf bifurcation.
The system in a polar coordinates can be transformed to the form

ṙ = (δ + ar 2)r , ϕ̇ = ω + br 2, were a = Re c, b = Im c

The bifurcation diagram for truncated equation is exactly the same as for the
Poincaré-Andronov-Hopf bifurcation. The bifurcation for a < 0 is called
supercritical, or soft, or non-catastrophic bifurcation), while for a > 0 it is
called subcritical, or sharp, or catastrophic bifurcation.

In the original system a two-dimensional invariant torus branches off the
periodic solution either at δ > 0 ( supercritical case) or at δ < 0 ( subcritical
case).



Example: normal form for Neimark-Sacker bifurcation, continued

The bifurcation diagrams look like this:
Supercritical case:

Subcritical case:



Example: normal form for Neimark-Sacker bifurcation, continued

There is nevertheless essential difference in behavior of trajectories in exact and
truncated system. The Poincaré section for exact system may look like this.

In the original system as a parameter changes on the invariant torus appear an
disappear isolated periodic trajectories.



On stability loss of periodic trajectory near the resonance 1:3

What happens if a pair of complex-conjugated multipliers ρ, ρ̄ cross the unit

circle near the points e±
2πi
3 ?

This is described by the following bifurcation diagram (“clock-face”), and the
similar diagram with the reverse of all arrows, V.I.Arnold, Geometrical methods
in the theory of ordinary differential equations”, ε = ln ρ− 2πi

3
.

A two-parametric bifurcation diagram is needed here.



On stability loss of periodic trajectory near the resonance 1:4

What happens if a pair of complex-conjugated multipliers ρ, ρ̄ cross the unit

circle near the points e±
πi
2 ?

Complete answer is not known. Here is one of scenarios, V.I.Arnold,
Geometrical methods in the theory of ordinary differential equations”,
ε = ln ρ− πi

2
.



On stability loss of periodic trajectory near the resonance 1 : q, q ≥ 5

What happens if a pair of complex-conjugated multipliers ρ, ρ̄ cross the unit

circle near the points e±
2πki

q , q ≥ 5, k and q are co-prime?
The bifurcation diagrams are all similar, here is the diagram for q = 5, k = 1,
V.I.Arnold, Geometrical methods in the theory of ordinary differential
equations”, ε = ln ρ− 2πi

5
.



On period-doubling bifurcation for periodic trajectory

The period-doubling bifurcation is a local bifurcation which takes place in
generic ODEs and maps when a periodic trajectory (or a fixed point, for a
map) loses stability as a real multiplier crosses the unit circle in the complex
plane in the point −1 .

For the analysis of this bifurcation in ODEs we will use a normal form for a
Poincaré return map. So, the detailed analysis is postponed till the section
about maps.
Here is the bifurcation diagram for ODEs for the supercritical case, ρ = −1 + δ.
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On period-doubling bifurcation for periodic trajectory

The period-doubling bifurcation is a local bifurcation which takes place in
generic ODEs and maps when a periodic trajectory (or a fixed point, for a
map) loses stability as a real multiplier crosses the unit circle in the complex
plane in the point −1 .

For the analysis of this bifurcation in ODEs we will use a normal form for a
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On period-doubling cascade and Feigenbaum’s universality

There were observed many cases when in a one parametric family of systems
there is an infinite sequence of period-doublings.

Let α be a parameter of the family. For α ∈ (α1, α2) there is a stable periodic
trajectory of a period T . At α = α2 a real multiplier of this trajectory passes
through −1, the trajectory loses its stability, and a new stable periodic
trajectory of the period 2T branches off. This trajectory remains stable for
α ∈ (α2, α3). At α = α3 a real multiplier of this trajectory passes through −1,
the trajectory loses its stablity, and a new stable periodic trajectory of the
period 4T branches off, and so on. For α ∈ (αn, αn+1) there is a a stable
periodic trajectory of the period 2nT . The sequence {αn} has a limit α∗ as
n →∞.

Moreover, the distance between successive moments of bifurcation decay about
as in a geometric progression with universal common ratio:

lim
k→∞

αk − αk−1

αk+1 − αk
= µF = 4.6692 . . .

The discussion of explanation of this phenomenon is postponed till the section
about period doubling for maps.

This phenomenon is called Feigenbaum’s universality in period-doubling
cascade. The constant µF is called the Feigenbaum constant. It is a new
mathematical constant like e or π.
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Resonances near fixed points of maps

Consider a map

x 7→ Ax + V (x), V = O(|x |2), x ∈ Rn

where A is a linear operator. Assume that V is analytic in some neighborhood
of 0.
We use the notation: λj , j = 1, 2, . . . , n are eigenvalues of A (multipliers of
fixed point 0), λ = (λ1, λ2, . . . , λn) , m = (m1, m2, . . . , mn),
|m| = |m1|+ |m2|+ . . . + |mn|, λm = λm1

1 λm2
2 · · ·λmn

n .

Definition
The set of eigenvalues of the operator A is called a resonant one if a relation
of the form

λs = λm,

is satisfied, where components of m are integer non-negative, |m| ≥ 2. This
relation is called a resonance relation or just a resonance. The value |m| is
called an order of the resonance.



Resonant monomials, resonant normal form near fixed point

Assume that eigenvalues λ1, λ2, . . . , λn of the operator A are all different. So,
the the eigenvectors e1, e2, . . . , en of the complexified operator A form a basis
in Cn.

Let some system S of resonance relations be given. We will assume that S
contains all resonance relations which can be derived from any subsystem of S.

Definition
A vector monomial xmes is called a resonant one for resonances in S if the
resonance relation λs = λm is presented in the system S.

Definition
A map

x 7→ Ax + . . .

is said to be in the resonant normal form for resonances from S if the nonlinear
part of its right hand side is a sum of resonant vector monomials.



Reduction to resonant normal form near fixed point

Theorem
If multipliers of a fixed point do not satisfy resonance relations up to an order
N inclusively except, may be, resonances from S, then by a polynomial real
close to the identical transformation of variables

x = y + O(|y |2)

the system is reducible to the form

y 7→ Ay + w(y) + O(|y |N+1)

were w is a sum of resonant vector monomials of degrees not exceeding N.

Thus, the system without the term O(|y |N+1) (also called a truncated system )
is in a resonant normal form.

Corollary

If there are no resonances of any order, except, may be, resonances from S,
then a formal transformation of variables reduces the original system to a
system in a formal resonant normal form.



Reduction to resonant normal form near fixed point

Procedure of reduction to resonant normal form near fixed point is analogous
to that near an equilibrium
The map under consideration has the form

x 7→ Ax + V (x), V (x) = v2(x) + v3(x) + . . . + vN(x) + O(|x |N+1)

where vr (x) is the homogeneous vector polynomial of x of degree r .

We are looking for a transformation of variables x 7→ y of the form

x = y + h(y), h(y) = h2(y) + h3(y) + . . . + hN(y)

which reduces the map to the form

y 7→ Ay + w(y) + O(|y |N+1), w(y) = w2(y) + w3(y) + . . . + wN(y)

where hr (y), wr (y) are homogeneous vector polynomials of y of degree r , and
wr (y) contains only resonant monomials. Plugging the transformation of
variables into original map, assuming that the transformed map has required
form and equating terms of order r we get a homological equation

hr (Ay)− Ahr (y) = Vr (y)− wr (y)

where Vr is the homogeneous vector polynomial of degree r whose coefficients
are expressed through coefficients of v2, . . . , vr , h2, . . . , hr−1, w2, . . . , wr−1.

Take as wr (y , t) the sum of resonant monomials in Vr (y , t).
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Reduction to resonant normal form near near fixed point, continued

Lemma
For this choice of wr the homological equation has a solution hr in the form of
a sum of non-resonant monomials. The solution in such form is a unique.

Proof.
Let e1, e2, . . . , en be eigenvectors of the complexified operator A, that
correspond to the eigenvalues λ1, λ2, . . . , λn. The eigenvalues of A are all
different, and so the eigenvectors form a basis in Cn. Let y1, y2, . . . , yn be
coordinates of y in this basis. Denote Ur (y) = Vr (y)− wr (y). Then

Ur =
X

s=1,...,n; |m|=r

Us,mymes , h =
X

s=1,...,n; |m|=r

hs,mymes

Equating in the homological equation the coefficients in front of ymes , we get

(λm − λs)hs,m = Us,m

Thus, hs,m = Us,m/(λm − λs). If y is real, then h(y) is real. This completes the
proof.
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